
Research Computing with Python, Lecture 3,
Top-down Programming and Version control

Ramses van Zon

SciNet HPC Consortium

November 12, 2013

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 1 / 55

Top-down Programming

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 2 / 55

About Python Programming

In lecture 1, we saw a lot of elements of programming in python.

We did not discuss how you actually go about using them.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 3 / 55

Simple example

Print the numbers from 1 to n, separated by ‘-’, for n=1..12

1

1 - 2

1 - 2 - 3

1 - 2 - 3 - 4

1 - 2 - 3 - 4 - 5

1 - 2 - 3 - 4 - 5 - 6

1 - 2 - 3 - 4 - 5 - 6 - 7

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 4 / 55

Simple Programming Example (1)

Print the numbers from 1 to n, separated by ‘-’, for n=1..12

Forget about code, what you would do when solving this?

1 Take the first value of n (n=1)
2 Write the numbers 1..n
3 Repeat step 2 for the next value of n, unless n is equal to 12

This is a loop!

This is a demonstration of top-down programming, so we’ll leave the
details of step 2 for later.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 5 / 55

Simple Programming Example (2)

Code sketch

#Print numbers from 1 to n separated by - for n=1..12

#1. Take the first value of n (n=1)

#2. Write the numbers 1..n

#3. Repeat step 2 for the next value of n unless n==12

Doesn’t matter if you do this in comments, or in some pseudo-code.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 6 / 55

Simple Programming Example (3)

Fill in high-level details

#Print numbers from 1 to n separated by - for n=1..12

#1. Take the first value of n (n=1)

n=1

#2. Write the numbers 1..n

print "Write the numbers 1 .. ",n

#3. Repeat step 2 for next value of n unless n==12

n=n+1

if (n!=12) goto step_two

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 7 / 55

Simple Programming Example (3)

Oops!

1 Step two not really implemented, just prints what it should do.
Will fill in details later (top-down)

2 Python does not have a goto statement.
We need a counting loop.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 8 / 55

Intermezzo: Counting Loop

Loops in python

Recall:

In Python, a for loop goes over values in a list (or similar).

Counting = going over a list of values from a start to an end.

Such a range of values is created by the range function:

In [1]: range(1,13)

Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Writing the counting loop

for i in range(1,13):

print i, # or anything we want to do with i

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 9 / 55

Intermezzo: Counting Loop

Caution using ranges to count

range function generates and stores all these values in memory.

When we’re counting large values, this can cause memory
troubles.

We only want one at value at the time

xrange function only generates one value at a time:

In [2]: xrange(1,13)

Out[2]: xrange(1, 13)

In [3]: for i in xrange(1,13):

.... print i,

....

1 2 3 4 5 6 7 8 9 10 11 12

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 10 / 55

Simple Programming Example (4)

Finish filling in high-level details

#Print numbers from 1 to n separated by - for n=1..12

#1. Take the first value of n (n=1)

for n in xrange(1,13):

#2. Write the numbers 1..n

print "Write the numbers 1 .. ",n

#3. Repeat for next value of n unless n==12

Although part 2 does not do what it should yet, this does run.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 11 / 55

Simple Programming Example (5)

Details for step 2

Write the numbers 1..n
Sub-step 1: No coding, write what you would do:

1 Take the first value to write (1)
2 Write it down
3 Add a dash
4 Repeat steps 2 and 3 for next value unless it is equal to n.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 12 / 55

Simple Programming Example (6)

Sub-step 2: Code top level comments:

#Write the numbers 1..n

#1. Take the first value to write (1)

#2. Write it down

#3. Add a dash

#4. Repeat step 2+3 for next value unless equal to n

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 13 / 55

Simple Programming Example (7)

Sub-step 3: Fill in code

#Write the numbers 1..n

#1. Take the first value to write (1)

for i in xrange(1,n+1):

#2. Write it down

print i,

#3. Add a dash

print ’-’,

#4. Repeat step 2+3 for next value unless equal to n

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 14 / 55

Simple Programming Example (8)

Sub-step 4: Insert code instead of “print”

#Print numbers from 1 to n separated by - for n=1..12

#1. Take the first value of n (n=1)

for n in xrange(1,13):

#2. Write the numbers 1..n

#2.1 Take the first value to write (1)

for i in xrange(1,n+1):

#2.2 Write it down

print i,

#2.3. Add a dash

print ’-’,

#2.4. Repeat step 2+3 for next value unless equal to n

#3. Repeat for next value of n unless n==12

Note the extra indentation!

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 15 / 55

Simple Programming Example (9)

Update comments

The way we do loops is a bit different from our initial layout.

#Print numbers from 1 to n separated by - for n=1..12

#1. Take the first value of n (n=1)

for n in xrange(1,13):

#2. Write the numbers 1..n

#2.1 Take the first value to write (1)

for i in xrange(1,n+1):

#2.2 Write it down

print i,

#2.3. Add a dash

print ’-’,

#2.4. Repeat step 2+3 for next value unless equal to n

#3. Repeat for the next value of n unless n==12

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 16 / 55

Simple Programming Example (10)

Update comments

The way we do loops is a bit different from our initial layout:

#Print numbers from 1 to n separated by - for n=1..12

#1. Let n take values from 1 to 12

for n in xrange(1,13):

#2. Write the numbers 1..n

#2.1 Let i take values from 1 to n

for i in xrange(1,n+1):

#2.2 Write it down

print i,

#2.3. Add a dash

print ’-’,

#2.4. Repeat step 2+3 for next value of i

#3. Repeat for next value of n

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 17 / 55

Simple Programming Example (11)

Update comments

Numbering not that relevant: refer to code blocks.

#Print numbers from 1 to n separated by - for n=1..12

Let n take values from 1 to 12

for n in xrange(1,13):

Write the numbers 1..n

Let i take values from 1 to n

for i in xrange(1,n+1):

Write it down

print i,

Add a dash

print ’-’,

Repeat block for next value of i

Repeat block for next value of n

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 18 / 55

Simple Programming Example (12)

#Print numbers from 1 to n separated by - for n=1..12

Let n take values from 1 to 12

for n in xrange(1,13):

Write the numbers 1..n

Let i take values from 1 to n

for i in xrange(1,n+1):

Write it down

print i,

Add a dash

print ’-’,

Repeat block for next value of i

Repeat block for next value of n

Output

1 - 1 - 2 - 1 - 2 - 3 - 1 - 2 - 3 - 4 - 1 - 2 - 3 - 4

- 5 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 -

7 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 1 - 2 - 3 - 4 - 5

- 6 - 7 - 8 - 9 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -

10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 1

- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 19 / 55

Simple Programming Example (13)

Output

1 - 1 - 2 - 1 - 2 - 3 - 1 - 2 - 3 - 4 - 1 - 2 - 3 - 4

- 5 - 1 - 2 - 3 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 -

7 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 1 - 2 - 3 - 4 - 5

- 6 - 7 - 8 - 9 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -

10 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 1

- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

What is wrong?

No ‘newlines’
Solution: some of the dashes should be ‘newlines’

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 20 / 55

Simple Programming Example (14)

#Print numbers from 1 to n separated by - for n=1..12

Let n take values from 1 to 12

for n in xrange(1,13):

Write the numbers 1..n

Let i take values from 1 to n

for i in xrange(1,n+1):

Write it down

print i,

Add a dash or newline

if i<n:

print ’-’,

else:

print ’’

Repeat block for next value of i

Repeat block for next value of n

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 21 / 55

Simple Programming Example (15)

#Print numbers from 1 to n separated by - for n=1..12

Let n take values from 1 to 12

for n in xrange(1,13):

Write the numbers 1..n

Let i take values from 1 to n-1

for i in xrange(1,n):

Write it down

print i,

Add a dash

print ’-’,

Print value of n at the end with a newline

print n

Repeat block for next value of i

Repeat block for next value of n

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 22 / 55

Top-down or Bottom-up approach

Top-down approach

We write the top level first and then coded the lower level, i.e.,
writing the numbers 1..n, later.

Bottom-up approach

One could also first implement writing the number 1..n.
Must define lower-level tools first nonetheless.

More generally, a bottom-up approach means putting simpler
pieces or code together to get a more complex system.

In a sense, we used the bottom-up approach when we invoke the
built-in functions xrange and print, which someone had already
programmed for us.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 23 / 55

Modularity

Modularity

We have seen python modules that can be imported
You can write your own modules
Each module should have one logical function
Each module is in its own file
On a more basic level, organize code in functions
Each function should have one logical function

Potential advantages of modular programming

More reuseable than monolythic designs
Clearer code
Easier to maintain
Easier to track changes

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 24 / 55

Modularity: Example
File: writenumbers.py

Function to write a line of numbers upto n

def write_numbers_upto(n):

"""Writes the numbers 1 through the argument n"""

Let i take values from 1 to n-1

for i in xrange(1,n):

Write it down with a dash

print i, ’-’,

Print value of n at the end with a newline

print n

Function to write several lines of numbers upto m

def write_multiple_numbers_upto(m):

"""Print numbers 1 through n for n=1..m"""

for n in xrange(1,m+1):

write_numbers_upto(n)

import writenumbers

writenumbers.write_multiple_numbers_upto(12)

...
Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 25 / 55

Version Control (Theory)

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 26 / 55

Version Control

What is it?

A tool for managing changes in a set of files.
Figuring out who broke what where and when.

Why Do it?

Collaboration
Organization
Track Changes
Faster Development
Reduce Errors
Reproducibility

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 27 / 55

Collaboration

Questions

What if two (or more) people want to edit the same file at the
same time?
What if you work on a lab and on your own computer?

Answers}
Option 1: make them take turns

I But then only one person can be working at any time

I And how do you enforce the rule?

Option 2: patch up differences afterwards

I Requires a lot of re-working
I Stuff always gets lost

Option 3: Version Control

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 28 / 55

Organize and Track Changes

Question

Want to undo changes to a file

I Start work, realize it’s the wrong approach, want to get back to
starting point

I Like “undo” in an editor. . .

. . . but keep the whole history of every file, forever

Also want to be able to see who changed what, when

I The best way to find out how something works is often to ask the
person who wrote it

Answer

Version Control

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 29 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 30 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 31 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 32 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 33 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 34 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 35 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 36 / 55

How Version Control Works

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 37 / 55

How Version Control Works

Resolving Conflicts: Optimistic Concurrency

Milk

<<<<<<<

Cheese

=======

Hot Dog

>>>>>>>

Juice

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 38 / 55

What VC System to Use?

Software

Open Source

I Subversion, CVS, RCS
I Git, Mercurial, Bazaar

Commercial

I Perforce, ClearCase

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 39 / 55

Mercurial Version Control

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 40 / 55

Mercurial

Open-Source Distributed Version Control System

Written in Python

Relatively easy to learn

Platform independent

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 41 / 55

Mercurial Installation

If you got the academic license, you can install mercurial from
the Canopy package manager.

If not, you can install it outside of Canopy and still use it.
(package manager or download from mercurial site)

After installation, tell mercurial who you are by editing
In Windows: %HOME%/Mercurial.ini
In Linux/Mac: $HOME/.hgrc
And adding

[ui]

username = FIRSTNAME LASTNAME <EMAILADDRESS>

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 42 / 55

Mercurial Usage In Enthought Canopy

Mercurial is used through a command line.

A command can be any executable plus arguments.

Get the OS command line from IPython with an exclamation
mark.

The name of the mercurial executable is hg, followed by a
subcommand and other arguments.

In IPython, mercurial commands would have form

!hg subcommand ...

We can omit the exclamation mark if we first type

alias hg hg

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 43 / 55

Basic things you want to do with Mercurial

1 Start a repository
2 Add files to be tracked
3 Store files
4 Modify/remove files
5 View (file) history
6 Revert changes
7 Copy a repository

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 44 / 55

1 Start a repository

hg init

This start a repository in the current directory by adding a
subdirectory .hg.

Make sure you are in the right directory (cd)

Example

In [1]: alias hg hg

In [2]: cd mypythonfolder

In [3]: hg init

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 45 / 55

2 Add files to be tracked

hg add [FILE [FILE ...]]

This adds FILE to be tracked in the repository.

Does not yet store it, just flags it.

If no FILEs are given adds all files in current directory.

Note on notation: All-caps words to be replaced by real names.
denotes optional arguments.

Example

In [4]: open("groceries","w").write("Milk\n")

In [5]: hg add groceries

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 46 / 55

3 Store files

hg commit -m ’MESSAGE’

This stores all the tracked files (only changes are stored).

To view what changes haven’t been commited yet:

hg status

Example

In [6]: hg commit -m ’First commit of grocery list’

groceries

committed changeset 0:f741ddf70ab2

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 47 / 55

4 Modify/remove files

Tracked modified files are stored in the repository when you commit.

Removing tracked files will flag them as ‘missing’.

To actually delete missing files from the repository:

hg remove -A

Example

In [7]: open("groceries","a").write("Eggs")

In [8]: hg status

M groceries

In [9]: hg commit -m ’Also need eggs’

groceries

committed changeset 1:44f60c750dc1

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 48 / 55

5 View (file) change history

hg log [FILE]

Shows history.

hg diff [FILE]

What changed since last commit?

Example

In [10]: hg log

changeset: 1:44f60c750dc1

tag: tip

user: Ramses "van Zon" <rzon@scinethpc.ca>

date: Tue Nov 12 01:15:04 2013 -0500

files: groceries

description:

Also need eggs

changeset: 0:f741ddf70ab2

user: Ramses "van Zon" <rzon@scinethpc.ca>

date: Tue Nov 12 01:11:56 2013 -0500

files: groceries

description:

First commit of grocery list

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 49 / 55

6 Revert changes

To revert uncommitted changes

hg revert FILE

or for all files:

hg revert --all

To revert last commit

hg rollback

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 50 / 55

7 Copy a repository

hg clone SOURCEPATH TARGETPATH

Can be used to revert to an arbitrary version as well:

hg clone -r VERSION SOURCEPATH TARGETPATH

Example

In [11]: cd ..

In [12]: hg clone mypythonfolder newpythonfolder

updating to branch default

resolving manifests

getting groceries

1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 51 / 55

A few VC tips

Use it! Will save you trouble.

Commit often

Give sensible comment messages

Don’t commit derivative stuff (log files, executables, compiled
python modules)

Rarely need to commit large binary files

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 52 / 55

Basic Mercurial Commands - Recap

command purpose

hg init create .hg repo folder for version data

hg add add file(s) to be tracked

hg remove -A remove already deleted files from repo

hg commit store tracked files

hg revert forget changes since last commit

hg rollback forget last commit

hg clone copy repository

hg log history

hg diff differences

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 53 / 55

Next Time

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 54 / 55

Next Lecture

Thursday November 14, 2013, 11:00 am
Topic: Numpy and Visualization

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 3, Top-down Programming and Version controlNovember 12, 2013 55 / 55

	Top-down Programming
	Version Control (Theory)
	Mercurial Version Control
	Next Time

