Intro to Research Computing with Python: Numerics

Erik Spence

SciNet HPC Consortium

7 November 2013

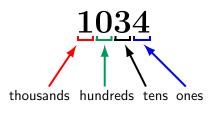
Today's class

Today we will discuss the following topics:

- Numbers. How are they represented and why.
- How computers store different types of numbers.
- The kinds of errors can creep into your calculations, if you're not careful.

How do we represent amounts?

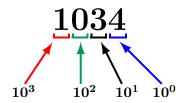
- We use numbers, of course.
- In grade school we are taught that numbers are organized in columns of digits. We learn the names of these columns.
- The numbers are understood as multiplying the digit in the column by the number that names the column.



$1034 = (1 \times 1000) + (0 \times 100) + (3 \times 10) + (4 \times 1)$

Other ways to represent an amount

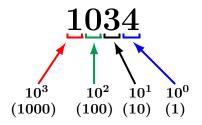
- Instead of using 'tens' and 'hundreds', let's represent the columns by powers of what we will call the 'base'.
- Our normal way of representing numbers is 'base 10', also called decimal.
- Each column represents a power of ten, and the coefficient can be one of 10 numerals (0-9).



$1034 = (1 \times 10^3) + (0 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)$

You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about base 7? (septimal?)

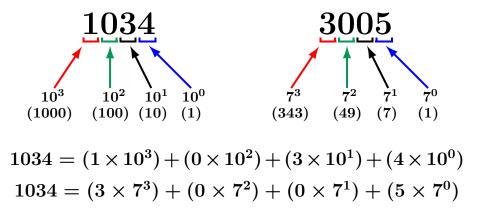


 $1034 = (1 \times 10^3) + (0 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)$

In base 7 the numerals have the range 0-6.

You can choose any base you want

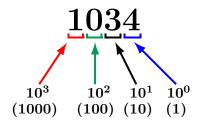
How do we represent the quantity 1034 if we change bases? What about base 7? (septimal?)



In base 7 the numerals have the range 0-6.

Who cares?

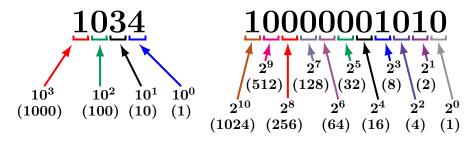
The reason we care is because computers do not use base 10 to store their data. Computers use base 2 (binary). The numerals have the range 0-1.



$1034 = (1 \times 10^3) + (0 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)$

Who cares?

The reason we care is because computers do not use base 10 to store their data. Computers use base 2 (binary). The numerals have the range 0-1.

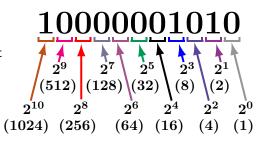


 $\begin{aligned} 1034 &= (1 \times 10^3) + (0 \times 10^2) + (3 \times 10^1) + (4 \times 10^0) \\ 1034 &= (1 \times 2^{10}) + (0 \times 2^9) + (0 \times 2^8) + (0 \times 2^7) \\ &+ (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) \\ &+ (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) \end{aligned}$

Why do computers use binary numbers?

Why use binary?

- Modern computers operate using circuits that have one of two states: 'on' or 'off'.
- This choice is related to the complexity and cost of building binary versus ternary circuitry.
- Binary numbers are like series of 'switches': each digit is either 'on' or 'off'.
- Each 'switch' in the number is called a 'bit'.



Count to 16 on one hand in binary!

How do computers store numbers?

Understanding how numbers are stored in a computer's memory is necessary to properly understand where problems can occur.

- Numbers are stored in binary format. This means base two.
- Rather than each column being a power of 10, each column is a power of 2.
- Each element of memory is called a 'bit'. The numbers to the right are eight-bit in size.

Base 10	Base 2	
0	00000000	
1	00000001	
2	00000010	
3	00000011	
4	00000100	
149	10010101	

 $149 = (1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (1 \times 2^4) + (0 \times 2^3)$ $+ (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$ = 128 + 16 + 4 + 1

Integers

- All integers are exactly representable.
- Different sizes of integer variables are available, depending on your hardware, OS, and programming language.
- A typical int is 32 bits, 1 bit for the sign.

- Finite range: can go from -2³¹ to 2³¹ 1 (-2,147,483,648 to 2,147,483,647).
- Unsigned integers: $0...2^{32} 1$.
- All operations (+, -, *) between representable integers are represented unless there is overflow.

Long integers

- Long integers are like regular integers, just with a bigger memory size, usually 64 bits.
- And consequently a bigger range of numbers.

- One bit for sign.
- ullet can go from - 2^{63} to $2^{63}-1$
- -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
- Unsigned long integers: $0...2^{64} - 1.$

A typical long int = 64 bits = 8 bytes.

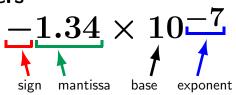
Fixed point numbers

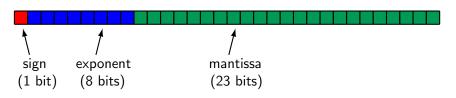
How do we deal with decimal places?

- We could treat real numbers like integers: 0 ... INT_MAX, and only keep, say, the last two digits behind the decimal point.
- This is known as 'fixed point' numbers, since the decimal place is always in the same spot.
- It is often used for financial timeseries data, since they only use a finite number of decimal places.
- But this is terrible for scientific computing. Relative precision varies with magnitude; we need to be able to represent small and large numbers at the same time.

Floating point numbers

- Analog of numbers in scientific notation.
- Inclusion of an exponent means the decimal point is 'floating'.
- Again, one bit is dedicated to sign.





A typical single precision real = 32 bits = 4 bytes. A typical double precision real = 64 bits = 8 bytes.

Special "numbers"

This format for storing floating point numbers comes from the IEEE 754 standard.

There's room in the format for the storing of a few special numbers.

- Signed infinities (+Inf, -Inf): result of overflow, or divide by zero.
- Signed zeros: signed underflow, or divide by +/-Inf.
- Not a Number (NaN): Sqrt of a negative number, 0/0, Inf/Inf, etc.
- The events which lead to these are usually errors, and can be made to cause exceptions.

Errors in floating point mathematics

There are errors inherent in using finite-length floating point variables.

- Except for numbers that fit exactly into a base two representation, assigning a real number to a floating point variable involves truncation.
- Think about how you represent 1/3. Is it 0.3? 0.33? 0.333?
- You end up with an error of 1/2 ULP (Unit in Last Place).

```
In [1]: a = 0.1
```

In base two, 0.1 is an infinitely repeating fraction: 0.00011001100110011001100110011...

Single precision: 1 part in $2^{-24} \sim 6e-8$. Double precision: 1 part in $2^{-53} \sim 1e-16$.

Testing for equality

Never ever ever ever test for equality with floating point numbers!

- Because of rounding errors in floating point numbers, you don't know exactly what you're going to get.
- Instead, test to see if the difference is below some tolerance that is near epsilon.
- Testing for equality with integers is ok, however, because integers are exact.

```
In [4]: a = 0.1 * 0.1
In [5]: b = 0.01
In [6]: (a == b)
Out[6]: False
In [7]: a
Out[7]: 0.0100000000000000002
In [8]: b
Out[8]: 0.01
In [9]: (abs(a - b) < 1e-15)
Out[9]: True
```


Floating point mathematics

One must be very careful when doing floating point mathematics.

Fire up Python and try the examples on the right.

What went wrong?

```
In [10]: print 1.
Out[10]: 1.0
In [11]: print 1.e-18
Out[11]: 1e-18
In [12]: print (1. - 1.) + 1.e-18
777
In [13]: print (1. + 1.e-18) - 1.
???
In [14]: print 1. + 1.e-18
777
```


Machine epsilon

Let's do some addition, to demonstrate what went wrong.

- Problem: 1.0 + 0.001
- Let's work in base 10.
- Let's assume that we only have a mantissa precision of 3, and exponent precision of 2.

 1.00×10^{0} $+1.00 imes 10^{-3}$ 1.00×10^{0} $+0.001 \times 10^{0}$ 1.00×10^{0}

Machine epsilon

Let's do some addition, to demonstrate what went wrong.

- Problem: 1.0 + 0.001
- Let's work in base 10.
- Let's assume that we only have a mantissa precision of 3, and exponent precision of 2.
- So what happened?
- Mantissa only has a precision of 3! The final answer is beyond the range of the mantissa!

 1.00×10^{0} $+\,1.00 imes10^{-3}$ 1.00×10^{0} $+\,0.001 imes10^{0}$ 1.00×10^{0}

Machine epsilon

Machine epsilon gives you the limits of the precision of the machine.

- Machine epsilon is defined to be the smallest x such that 1 + x ≠ 1.
- (or sometimes, the largest xsuch that 1 + x = 1.)
- Machine epsilon is named after the mathematical term for a small positive infinitesimal.

```
In [15]: print 1.
Out[15]: 1.0
In [16]: print 1.e-18
Out[16]: 1e-18
In [17]: print (1. - 1.) + 1.e-18
Out[17]: 1e-18
In [18]: print (1. + 1.e-18) - 1.
Out[18]: 0.0
In [19]: print 1. + 1.e-18
Out[19]: 1.0
```


What's your epsilon?

You can find your approximate machine epsilon by repeatedly halving a number and testing it.

```
# myepsilon.py
def myepsilon():
```

```
# Initialize our epsilon.
eps = 1.0
```

```
# Is (1 + eps) > 1?
while ((1. + eps) > 1.):
    # If it is, divide and print it.
    eps = eps / 2.
    # Change the number of digits
    # printed so we can see them
    # all.
    print '%1.8e %1.18f' % \
        (eps, (1. + eps))
```

```
In [22]:
```

The epsilon is about 1e-16 for my desktop, as expected for double precision.

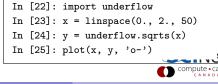
Underflow: look out below!

Underflow occurs when the result of a calculation is smaller than machine epsilon.

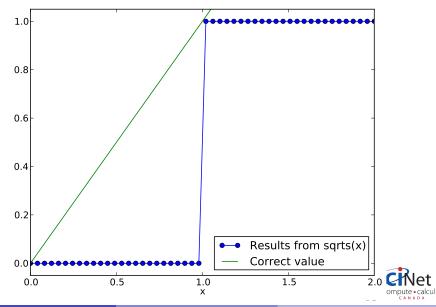
Try the following:

- Repeatedly take sqrts, then square the number.
- Plot this from 0..2.
- What should you get? What do you get?
- Loss of precision in early stages of a calculation can cause problems.

```
# underflow.py
from numpy import sqrt
def sqrts(x):
 # Make a copy of the argument.
 v = x
 # Repeatedly sqrt, then square.
 for i in xrange(128):
   y = sqrt(y)
 for i in xrange(128):
   v = v * v
 return y
```



Underflow: uh oh



Underflow: what happened?

<pre># underflow.py from numpy import sqrt def sqrts(x):</pre>	<pre>In [26]: sqrts(0.1) 0 0.3162277660168379 1 0.5623413251903491</pre>	<pre>In [27]: sqrts(1.9) 0 1.3784048752090221 1 1.1740548859440185</pre>
<pre>y = x for i in xrange(128):</pre>		
<pre>y = sqrt(y) print '%1i %1.16f' % (i,y) for i in xrange(128): y = y * y print '%1i %1.16f' % (i,y) return y</pre>	126 0.9999999999999999999 127 0.9999999999999999 0 0.9999999999999999	126 1.000000000000000 127 1.0000000000000 0 1.00000000000000 1 1.0000000000
If the argument is below 1.0, sqrt pushes it up to epsilon below 1.0.	126 0.00000000000000000000000000000000000	126 1.000000000000000000000000000000000000

If the argument is above 1.0, sqrt pulls it down to exactly 1.0.

Beware: subtraction

Be very wary of subtracting very similar numbers.

- Problem: subtract 1.22 from 1.23.
- Assume that we only have a mantissa precision of 3, and exponent precision of 2.
- By performing this subtraction, we eliminate most of the information, and end up with 'catastrophic cancellation'.
- We go from 3 significant digits to 1.
- Dangerous in intermediate results.

3 sig. digits $igvee 1.23 imes 10^{0} \ - 1.22 imes 10^{0}$ $1.00 imes 10^{-2}$ 1 sig. digit

23 / 27

7 November 2013

Overflow

Overflow occurs when the result of a calculation exceeds the memory size of the variable.

- 8-bit integers have a range of -128 to 127.
- When Python calculates a quantity, it up-casts all of the variables to the 'largest' variable type in the calculation.
 - int are converted to long ints
 - ints are converted to floats
 - single precision floats are converted to double.
- Always be sure to use variables that are big enough for what you're doing.

```
In [28]: a = int8(10)
In [29]: a
Out[29]: 10
In [30]: a.dtype
Out[30]: dtype('int8')
In [31]: a * a
Out[31]: 100
In [32]: a * a * a
Out[32]: -24
In [33]: a * a * int16(a)
Out[33]: 1000
In [34]: a * float(a) * int16(a)
Out[34]: 1000.0
```

Summary: things to remember

- Integers are stored exactly.
- Floating point numbers are, in general, NOT stored exactly. Rounding error will cause the number to be slightly off.
- DO NOT test floating point numbers for equality. Instead test (abs(a - b) < cutoff).
- Know the approximate value of epsilon for the machine that you are using.
- Be aware of underflow: if your calculations get too close to epsilon you've lost all your precision.
- Try not to subtract numbers that are very close to one another. 'Catastrophic cancellation' leads to loss of precision.
- Be aware of overflow: use variable sizes that are appropriate for your problem.

Homework 1

Write a program, called DecimalToBinary, which takes as its argument a base-10 integer and returns array which contains the argument's binary form.

```
In [35]: DecimalToBinary(149)
Out[35]: array([1, 0, 0, 1, 0, 1, 0, 1])
```

Consider the single precision sequence of numbers: 1 followed by 10^8 values of 10^{-8} .

- This sequence should sum to 2.
- > Write a program code which sums the sequence in order, and returns it.
- Add to the program a routine which sums up values in reverse order, and returns that.
- Add a routine which returns a pairwise sum (a sum which adds pairs of numbers, followed by the pairs of the resulting sequence, etc.)?

```
In [36]: import array
In [37]: sequence = array.array('f')
In [38]: sequence.append(1.0)
In [39]: for i in xrange(10**8): sequence.append(10**-8)
```

Homework 1, continued

- Write a program, called OverflowUnderflow, which, given an argument m > 1.0, returns
 - the minimum value of integer n that generates an overflow error when calculating mⁿ.
 - **2** the minimum value of integer p that generates an underflow error when calculating m^{-p} .

Be sure to convert the argument to single precision before performing the tests.

```
In [40]: a = float32(10.)
In [41]: a.dtype
Out[41]: dtype('float32')
```

