
Intro to Research Computing with
Python: Numerics

Erik Spence

SciNet HPC Consortium

7 November 2013

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 1 / 27

Today’s class

Today we will discuss the following topics:

Numbers. How are they represented and why.

How computers store different types of numbers.

The kinds of errors can creep into your calculations, if you’re not
careful.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 2 / 27

How do we represent amounts?

We use numbers, of course.

In grade school we are
taught that numbers are
organized in columns of
digits. We learn the names
of these columns.

The numbers are understood
as multiplying the digit in
the column by the number
that names the column.

1034

thousands hundreds tens ones

1034 = (1× 1000)+ (0× 100)+ (3× 10)+ (4× 1)

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 3 / 27

Other ways to represent an amount

Instead of using ’tens’ and
’hundreds’, let’s represent
the columns by powers of
what we will call the ’base’.

Our normal way of
representing numbers is ’base
10’, also called decimal.

Each column represents a
power of ten, and the
coefficient can be one of 10
numerals (0-9).

1034

103 102 101 100

1034 = (1×103)+(0×102)+(3×101)+(4×100)

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 4 / 27

You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about
base 7? (septimal?)

1034

103

(1000)
102

(100)
101

(10)
100

(1)

3005

73

(343)
72

(49)
71

(7)
70

(1)

1034 = (1×103)+(0×102)+(3×101)+(4×100)

1034 = (3× 73) + (0× 72) + (0× 71) + (5× 70)

In base 7 the numerals have the range 0-6.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 5 / 27

You can choose any base you want

How do we represent the quantity 1034 if we change bases? What about
base 7? (septimal?)

1034

103

(1000)
102

(100)
101

(10)
100

(1)

3005

73

(343)
72

(49)
71

(7)
70

(1)

1034 = (1×103)+(0×102)+(3×101)+(4×100)

1034 = (3× 73) + (0× 72) + (0× 71) + (5× 70)

In base 7 the numerals have the range 0-6.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 5 / 27

Who cares?
The reason we care is because computers do not use base 10 to store their
data. Computers use base 2 (binary). The numerals have the range 0-1.

1034

103

(1000)
102

(100)
101

(10)
100

(1)

10000001010

210

(1024)

29

(512)

28

(256)

27

(128)

26

(64)

25

(32)

24

(16)

23

(8)

22

(4)

21

(2)

20

(1)

1034 = (1×103)+(0×102)+(3×101)+(4×100)

1034 = (1× 210) + (0× 29) + (0× 28) + (0× 27)

+(0× 26) + (0× 25) + (0× 24) + (1× 23)

+(0× 22) + (1× 21) + (0× 20)

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 6 / 27

Who cares?
The reason we care is because computers do not use base 10 to store their
data. Computers use base 2 (binary). The numerals have the range 0-1.

1034

103

(1000)
102

(100)
101

(10)
100

(1)

10000001010

210

(1024)

29

(512)

28

(256)

27

(128)

26

(64)

25

(32)

24

(16)

23

(8)

22

(4)

21

(2)

20

(1)

1034 = (1×103)+(0×102)+(3×101)+(4×100)

1034 = (1× 210) + (0× 29) + (0× 28) + (0× 27)

+(0× 26) + (0× 25) + (0× 24) + (1× 23)

+(0× 22) + (1× 21) + (0× 20)

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 6 / 27

Why do computers use binary numbers?

Why use binary?

Modern computers
operate using circuits that
have one of two states:
’on’ or ’off’.

This choice is related to
the complexity and cost
of building binary versus
ternary circuitry.

Binary numbers are like
series of ’switches’: each
digit is either ’on’ or ’off’.

Each ’switch’ in the
number is called a ’bit’.

10000001010

210

(1024)

29

(512)

28

(256)

27

(128)

26

(64)

25

(32)

24

(16)

23

(8)

22

(4)

21

(2)

20

(1)

Count to 16 on one hand in binary!

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 7 / 27

How do computers store numbers?
Understanding how numbers are stored in a computer’s memory is
necessary to properly understand where problems can occur.

Numbers are stored in binary
format. This means base two.

Rather than each column being
a power of 10, each column is a
power of 2.

Each element of memory is
called a ’bit’. The numbers to
the right are eight-bit in size.

Base 10 Base 2

0 00000000

1 00000001

2 00000010

3 00000011

4 00000100

149 10010101

149 = (1× 27) + (0× 26) + (0× 25) + (1× 24) + (0× 23)

+(1× 22) + (0× 21) + (1× 20)

= 128 + 16 + 4 + 1

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 8 / 27

Integers

All integers are exactly
representable.

Different sizes of integer
variables are available,
depending on your hardware,
OS, and programming
language.

A typical int is 32 bits, 1 bit
for the sign.

Finite range: can go from -231

to 231 − 1 (-2,147,483,648 to
2,147,483,647).

Unsigned integers: 0...232 − 1.

All operations (+, -, *) between
representable integers are
represented unless there is
overflow.

sign number

A typical int = 32 bits = 4 bytes.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 9 / 27

Long integers

Long integers are like
regular integers, just with
a bigger memory size,
usually 64 bits.

And consequently a
bigger range of numbers.

One bit for sign.

can go from -263 to 263 − 1

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

Unsigned long integers:
0...264 − 1.

sign number

A typical long int = 64 bits = 8 bytes.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 10 / 27

Fixed point numbers

How do we deal with decimal places?

We could treat real numbers like integers: 0 ... INT MAX, and only
keep, say, the last two digits behind the decimal point.

This is known as ’fixed point’ numbers, since the decimal place is
always in the same spot.

It is often used for financial timeseries data, since they only use a
finite number of decimal places.

But this is terrible for scientific computing. Relative precision varies
with magnitude; we need to be able to represent small and large
numbers at the same time.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 11 / 27

Floating point numbers

Analog of numbers in
scientific notation.

Inclusion of an exponent
means the decimal point is
’floating’.

Again, one bit is dedicated to
sign.

−1.34× 10−7

sign mantissa base exponent

sign
(1 bit)

exponent
(8 bits)

mantissa
(23 bits)

A typical single precision real = 32 bits = 4 bytes.
A typical double precision real = 64 bits = 8 bytes.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 12 / 27

Special “numbers”

This format for storing floating point numbers comes from the IEEE 754
standard.

There’s room in the format for the storing of a few special numbers.

Signed infinities (+Inf, -Inf): result of overflow, or divide by zero.

Signed zeros: signed underflow, or divide by +/-Inf.

Not a Number (NaN): Sqrt of a negative number, 0/0, Inf/Inf, etc.

The events which lead to these are usually errors, and can be made to
cause exceptions.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 13 / 27

Errors in floating point mathematics
There are errors inherent in using
finite-length floating point
variables.

Except for numbers that fit
exactly into a base two
representation, assigning a
real number to a floating
point variable involves
truncation.

Think about how you
represent 1/3. Is it 0.3?
0.33? 0.333?

You end up with an error of
1/2 ULP (Unit in Last
Place).

In [1]: a = 0.1

In [2]: print a

Out[2]: 0.1

In [3]: a

Out[3]: 0.10000000000000001

In base two, 0.1 is an infinitely
repeating fraction:
0.0001100110011001100110011...

Single precision: 1 part in
2−24 ∼ 6e-8.
Double precision: 1 part in
2−53 ∼ 1e-16.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 14 / 27

Testing for equality

Never ever ever ever test for
equality with floating point
numbers!

Because of rounding errors in
floating point numbers, you
don’t know exactly what
you’re going to get.

Instead, test to see if the
difference is below some
tolerance that is near epsilon.

Testing for equality with
integers is ok, however,
because integers are exact.

In [4]: a = 0.1 * 0.1

In [5]: b = 0.01

In [6]: (a == b)

Out[6]: False

In [7]: a

Out[7]: 0.010000000000000002

In [8]: b

Out[8]: 0.01

In [9]: (abs(a - b) < 1e-15)

Out[9]: True

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 15 / 27

Floating point mathematics

One must be very careful when
doing floating point mathematics.

Fire up Python and try the
examples on the right.

What went wrong?

In [10]: print 1.

Out[10]: 1.0

In [11]: print 1.e-18

Out[11]: 1e-18

In [12]: print (1. - 1.) + 1.e-18

???

In [13]: print (1. + 1.e-18) - 1.

???

In [14]: print 1. + 1.e-18

???

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 16 / 27

Machine epsilon

Let’s do some addition, to
demonstrate what went wrong.

Problem: 1.0 + 0.001

Let’s work in base 10.

Let’s assume that we only have
a mantissa precision of 3, and
exponent precision of 2.

So what happened?

Mantissa only has a precision of
3! The final answer is beyond
the range of the mantissa!

1.00× 100

+ 1.00× 10−3

1.00× 100

+ 0.001×100

1.00× 100

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 17 / 27

Machine epsilon

Let’s do some addition, to
demonstrate what went wrong.

Problem: 1.0 + 0.001

Let’s work in base 10.

Let’s assume that we only have
a mantissa precision of 3, and
exponent precision of 2.

So what happened?

Mantissa only has a precision of
3! The final answer is beyond
the range of the mantissa!

1.00× 100

+ 1.00× 10−3

1.00× 100

+ 0.001×100

1.00× 100

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 17 / 27

Machine epsilon

Machine epsilon gives you the
limits of the precision of the
machine.

Machine epsilon is defined to
be the smallest x such that
1 + x 6= 1.

(or sometimes, the largest x
such that 1 + x = 1.)

Machine epsilon is named
after the mathematical term
for a small positive
infinitesimal.

In [15]: print 1.

Out[15]: 1.0

In [16]: print 1.e-18

Out[16]: 1e-18

In [17]: print (1. - 1.) + 1.e-18

Out[17]: 1e-18

In [18]: print (1. + 1.e-18) - 1.

Out[18]: 0.0

In [19]: print 1. + 1.e-18

Out[19]: 1.0

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 18 / 27

What’s your epsilon?
You can find your approximate
machine epsilon by repeatedly
halving a number and testing it.

myepsilon.py

def myepsilon():

Initialize our epsilon.

eps = 1.0

Is (1 + eps) > 1?

while ((1. + eps) > 1.):

If it is, divide and print it.

eps = eps / 2.

Change the number of digits

printed so we can see them

all.

print ’%1.8e %1.18f’ % \
(eps, (1. + eps))

In [20]: import myepsilon

In [21]: myepsilon.myepsilon()

.

.

.

1.77635684e-15 1.000000000000001776

8.88178420e-16 1.000000000000000888

4.44089210e-16 1.000000000000000444

2.22044605e-16 1.000000000000000222

1.11022302e-16 1.000000000000000000

In [22]:

The epsilon is about 1e-16 for my
desktop, as expected for double
precision.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 19 / 27

Underflow: look out below!
Underflow occurs when the result
of a calculation is smaller than
machine epsilon.

Try the following:

Repeatedly take sqrts, then
square the number.

Plot this from 0..2.

What should you get? What
do you get?

Loss of precision in early
stages of a calculation can
cause problems.

underflow.py

from numpy import sqrt

def sqrts(x):

Make a copy of the argument.

y = x

Repeatedly sqrt, then square.

for i in xrange(128):

y = sqrt(y)

for i in xrange(128):

y = y * y

return y

In [22]: import underflow

In [23]: x = linspace(0., 2., 50)

In [24]: y = underflow.sqrts(x)

In [25]: plot(x, y, ’o-’)

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 20 / 27

Underflow: uh oh

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Results from sqrts(x)
Correct value

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 21 / 27

Underflow: what happened?
underflow.py

from numpy import sqrt

def sqrts(x):

y = x

for i in xrange(128):

y = sqrt(y)

print ’%1i %1.16f’ % (i,y)

for i in xrange(128):

y = y * y

print ’%1i %1.16f’ % (i,y)

return y

If the argument is below
1.0, sqrt pushes it up to
epsilon below 1.0.

If the argument is above
1.0, sqrt pulls it down to
exactly 1.0.

In [26]: sqrts(0.1)

0 0.3162277660168379

1 0.5623413251903491

.

.

126 0.9999999999999999

127 0.9999999999999999

0 0.9999999999999998

1 0.9999999999999996

2 0.9999999999999991

3 0.9999999999999982

.

.

126 0.0000000000000000

127 0.0000000000000000

Out[26]: 0.0

In [27]: sqrts(1.9)

0 1.3784048752090221

1 1.1740548859440185

.

.

126 1.0000000000000000

127 1.0000000000000000

0 1.0000000000000000

1 1.0000000000000000

2 1.0000000000000000

3 1.0000000000000000

.

.

126 1.0000000000000000

127 1.0000000000000000

Out[27]: 1.0

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 22 / 27

Beware: subtraction
Be very wary of subtracting very
similar numbers.

Problem: subtract 1.22 from
1.23.

Assume that we only have a
mantissa precision of 3, and
exponent precision of 2.

By performing this subtraction,
we eliminate most of the
information, and end up with
’catastrophic cancellation’.

We go from 3 significant digits
to 1.

Dangerous in intermediate
results.

1.23× 100

− 1.22× 100

1.00× 10−2

3 sig. digits

1 sig. digit

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 23 / 27

Overflow
Overflow occurs when the result of a
calculation exceeds the memory size
of the variable.

8-bit integers have a range of
-128 to 127.

When Python calculates a
quantity, it up-casts all of the
variables to the ’largest’ variable
type in the calculation.

I int are converted to long ints
I ints are converted to floats
I single precision floats are

converted to double.

Always be sure to use variables
that are big enough for what
you’re doing.

In [28]: a = int8(10)

In [29]: a

Out[29]: 10

In [30]: a.dtype

Out[30]: dtype(’int8’)

In [31]: a * a

Out[31]: 100

In [32]: a * a * a

Out[32]: -24

In [33]: a * a * int16(a)

Out[33]: 1000

In [34]: a * float(a) * int16(a)

Out[34]: 1000.0

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 24 / 27

Summary: things to remember

Integers are stored exactly.

Floating point numbers are, in general, NOT stored exactly.
Rounding error will cause the number to be slightly off.

DO NOT test floating point numbers for equality. Instead test
(abs(a - b) < cutoff).

Know the approximate value of epsilon for the machine that you are
using.

Be aware of underflow: if your calculations get too close to epsilon
you’ve lost all your precision.

Try not to subtract numbers that are very close to one another.
’Catastrophic cancellation’ leads to loss of precision.

Be aware of overflow: use variable sizes that are appropriate for your
problem.

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 25 / 27

Homework 1
1 Write a program, called DecimalToBinary, which takes as its

argument a base-10 integer and returns array which contains the
argument’s binary form.

In [35]: DecimalToBinary(149)

Out[35]: array([1, 0, 0, 1, 0, 1, 0, 1])

2 Consider the single precision sequence of numbers: 1 followed by 108

values of 10−8.
I This sequence should sum to 2.
I Write a program code which sums the sequence in order, and returns it.
I Add to the program a routine which sums up values in reverse order,

and returns that.
I Add a routine which returns a pairwise sum (a sum which adds pairs of

numbers, followed by the pairs of the resulting sequence, etc.)?

In [36]: import array

In [37]: sequence = array.array(’f’)

In [38]: sequence.append(1.0)

In [39]: for i in xrange(10**8): sequence.append(10**-8)

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 26 / 27

Homework 1, continued

3 Write a program, called OverflowUnderflow, which, given an
argument m > 1.0, returns

1 the minimum value of integer n that generates an overflow error when
calculating mn.

2 the minimum value of integer p that generates an underflow error when
calculating m−p.

Be sure to convert the argument to single precision before performing the
tests.

In [40]: a = float32(10.)

In [41]: a.dtype

Out[41]: dtype(’float32’)

Erik Spence (SciNet HPC Consortium) Numerics 7 November 2013 27 / 27

	Numbers
	Bases
	Base 2

	Data types
	Integers
	Fixed point numbers
	Floating point numbers
	Special 'numbers'

	Errors and dangers
	Equality testing
	Machine epsilon
	Underflow
	Overflow

	Summary and Homework

