
ibm.com/redbooks

Front cover

IBM System Blue Gene Solution
Blue Gene/Q
Application Development

Megan Gilge

Understand the Blue Gene/Q
programming environment

See available parallel
programming paradigms

Learn how to run and
debug programs

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM System Blue Gene Solution: Blue Gene/Q
Application Development

June 2013

SG24-7948-01

© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (June 2013)

This edition applies to Version 1, Release 1, Modification 2 of IBM Blue Gene/Q (product number 5733-BGQ).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . ix

Preface . xi
Author. xi
Now you can become a published author, too! . xii
Comments welcome. xii
Stay connected to IBM Redbooks . xiii

Summary of changes .xv
June 2013, Second Edition .xv

Chapter 1. System overview. 1
1.1 Blue Gene/Q environment overview . 2
1.2 Blue Gene/Q hardware overview . 3
1.3 Blue Gene/Q software overview . 4

1.3.1 System administration and management . 4
1.3.2 Compute Node Kernel and services . 4
1.3.3 I/O node kernel and services . 5
1.3.4 Message Passing Interface. 5
1.3.5 Compilers . 6
1.3.6 Application development and debugging . 6

Chapter 2 Kernel functionality . 9
2.1 Compute Node Kernel. 10

2.1.1 Stateless compute nodes . 11
2.1.2 Firmware . 11

2.2 Role of the I/O node kernel . 12

Chapter 3. Processes . 13
3.1 Importance of process count . 14
3.2 Process creation . 14
3.3 Processes per node . 14
3.4 Determining how many processes per node to use . 15
3.5 Specifying process count . 15
3.6 Support for 64-bit applications . 16
3.7 Object identifiers . 16

3.7.1 Process identifier . 16
3.7.2 Thread identifier . 17
3.7.3 Thread group identifier . 17
3.7.4 T coordinate . 17

3.8 Sub-node jobs . 17
3.9 Threading overview. 17

3.9.1 Hardware thread over-commitment. 17
3.10 Thread scheduler . 18

3.10.1 Thread preemption . 18
3.10.2 Thread yield . 19
3.10.3 Round-robin dispatch . 19

3.11 Thread affinity . 19
© Copyright IBM Corp. 2013. All rights reserved. iii

3.11.1 Breadth-first assignment . 19
3.11.2 Depth-first assignment . 19
3.11.3 Thread affinity control . 19
3.11.4 Setting affinity with the pthread attribute . 20
3.11.5 Setting affinity with the system call . 20
3.11.6 Extended thread affinity control . 20

3.12 Thread priority . 21
3.12.1 Setting priority through the pthread attribute. 22
3.12.2 Explicit setting of priority . 23
3.12.3 Hardware thread priority . 23

Chapter 4. Memory . 25
4.1 Memory system overview . 26

4.1.1 L1 prefetch cache overview . 26
4.1.2 L2 cache functional overview . 28
4.1.3 Boot eDRAM overview . 28

4.2 Memory management . 29
4.3 Memory protection . 29
4.4 Shared memory. 29
4.5 Persistent memory . 30
4.6 Compute node ramdisk . 30
4.7 Support for the /proc file system . 31
4.8 L1P prefetcher. 32

4.8.1 Linear stream prefetcher overview . 33
4.8.2 Perfect prefetcher overview . 34
4.8.3 L1P prefetcher API descriptions . 38
4.8.4 Performance considerations . 52

4.9 L2 atomic operations. 53
4.10 Speculative execution . 53
4.11 Support for dynamic linking. 54
4.12 Transactional memory. 54

Chapter 5. Compute Node Kernel interfaces . 55
5.1 Lightweight principles . 56
5.2 Kernel access . 56

5.2.1 Application programming interfaces . 56
5.2.2 System programming interface . 62

5.3 System calls . 63

Chapter 6. Parallel paradigms . 65
6.1 Programming model . 66
6.2 Blue Gene/Q MPI implementation. 67

6.2.1 High-performance network for efficient parallel execution 67
6.2.2 Forcing MPI to allocate too much memory . 69
6.2.3 Not waiting for the MPI_Test function . 70
6.2.4 Flooding the network with messages . 70
6.2.5 Deadlocking the system . 70
6.2.6 Violating MPI buffer ownership rules. 71
6.2.7 Buffer alignment sensitivity . 71

6.3 Blue Gene/Q MPI extensions . 72
6.3.1 Changing class-route usage at run time . 72
6.3.2 Determining hardware properties . 73

6.4 MPI functions . 73
6.5 Compiling MPI programs on the Blue Gene/Q system . 74
iv IBM System Blue Gene Solution: Blue Gene/Q Application Development

6.6 OpenMP . 77
6.6.1 OpenMP implementation for Blue Gene/Q . 77

6.7 Multiple Program, Multiple Data . 77

Chapter 7. Developing applications with Blue Gene/Q compilers 79
7.1 Programming environment overview. 80
7.2 Compilers for the Blue Gene/Q system. 80

7.2.1 IBM XL compilers . 80
7.2.2 GNU Compiler Collection . 81
7.2.3 Python interpreter . 81
7.2.4 Toolchain tools . 81

7.3 Compiling and linking applications on the Blue Gene/Q system. 81
7.4 Compiler options specific to the Blue Gene/Q system . 82

7.4.1 Options for the Blue Gene/Q system . 82
7.4.2 Unsupported compiler options . 83

7.5 Support for pthreads and OpenMP . 83
7.5.1 Thread stack size for the Blue Gene/Q system. 84

7.6 Creating libraries on the Blue Gene/Q system . 85
7.7 Running dynamically linked applications on the Blue Gene/Q system 86

7.7.1 Creating a program . 86
7.7.2 Creating a shared library. 87
7.7.3 Running a Blue Gene/Q dynamically linked program on a front end node 87
7.7.4 Running a dynamically linked program on the Blue Gene/Q system 87
7.7.5 Tools for dynamic linking. 88

7.8 Mathematical Acceleration Subsystem Libraries. 92
7.9 Engineering and Scientific Subroutine Libraries . 92
7.10 Cross-compilation on the Blue Gene/Q system . 92

7.10.1 Configuring and building on an I/O node used as a front end node 93
7.10.2 Using implicit program launching from a front end node. 93

7.11 Python support . 95
7.11.1 Using the Python interpreter in a cross-compiled environment. 95
7.11.2 Running the Python interpreter on the Blue Gene/Q system 96

7.12 Using the QPX floating-point unit . 97
7.12.1 Using SIMD instructions in applications . 98

Chapter 8. Running and debugging applications . 103
8.1 Running applications. 104

8.1.1 IBM LoadLeveler . 104
8.2 Debugging applications. 104

8.2.1 General debugging architecture . 105
8.2.2 GNU Project Debugger . 105
8.2.3 Coreprocessor debugger . 108
8.2.4 The addr2line utility . 109

8.3 What to do when a job fails . 112
8.4 Debugging jobs . 113

8.4.1 The snapbug tool . 113
8.4.2 The Coreprocessor tool . 113

Appendix A. Mapping . 115
Mapping overview . 116
General guidance. 117

Appendix B. Blue Gene/Q personality. 121
Personality of Blue Gene/Q nodes. 122
 Contents v

Examples of retrieving Blue Gene/Q personality information. 122

Appendix C. PAMI and MPI header files and libraries . 125
Blue Gene/Q applications . 126

Appendix D. MPI and CNK environment variables . 129
Message Passing Interface environment variables . 130
Compute Node Kernel environment variables . 142
Setting environment variables . 145

Appendix E. Using GNU profiling . 147
Using the Blue Gene/Q gmon tool . 148

Specifying which ranks generate gmon.out files . 148
Functions to disable gmon.out files for some nodes. 148
Profiling for threads. 148

Profiling with the GNU toolchain . 148
Using timer tick (machine instruction level) profiling . 149
Collecting call count information . 149

Appendix F. Hardware performance counters . 151
Blue Gene Hardware Performance Monitoring API . 152
Performance Application Programming Interface . 153

Appendix G. Requirements for C++ programming in a failover environment 155

Abbreviations and acronyms . 157

Related publications . 159
IBM Redbooks . 159
Other publications . 159
Online resources . 160
How to get IBM Redbooks . 160
Help from IBM . 161

References . 163

Index . 165
vi IBM System Blue Gene Solution: Blue Gene/Q Application Development

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

IBM DOES NOT WARRANT OR REPRESENT THAT THE CODE PROVIDED IS COMPLETE OR
UP-TO-DATE. IBM DOES NOT WARRANT, REPRESENT OR IMPLY RELIABILITY, SERVICEABILITY OR
FUNCTION OF THE CODE. IBM IS UNDER NO OBLIGATION TO UPDATE CONTENT NOR PROVIDE
FURTHER SUPPORT.

ALL CODE IS PROVIDED "AS IS," WITH NO WARRANTIES OR GUARANTEES WHATSOEVER. IBM
EXPRESSLY DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ALL EXPRESS, IMPLIED,
STATUTORY AND OTHER WARRANTIES, GUARANTEES, OR REPRESENTATIONS, INCLUDING,
WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY AND INTELLECTUAL PROPERTY RIGHTS.
YOU UNDERSTAND AND AGREE THAT YOU USE THESE MATERIALS, INFORMATION, PRODUCTS,
SOFTWARE, PROGRAMS, AND SERVICES, AT YOUR OWN DISCRETION AND RISK AND THAT YOU
WILL BE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY RESULT, INCLUDING LOSS OF DATA
OR DAMAGE TO YOUR COMPUTER SYSTEM.

IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY TYPE WHATSOEVER RELATED TO
OR ARISING FROM USE OF THE CODE FOUND HEREIN, WITHOUT LIMITATION, ANY LOST PROFITS,
BUSINESS INTERRUPTION, LOST SAVINGS, LOSS OF PROGRAMS OR OTHER DATA, EVEN IF IBM IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS EXCLUSION AND WAIVER OF
LIABILITY APPLIES TO ALL CAUSES OF ACTION, WHETHER BASED ON CONTRACT, WARRANTY,
TORT OR ANY OTHER LEGAL THEORIES.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.
© Copyright IBM Corp. 2013. All rights reserved. vii

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
viii IBM System Blue Gene Solution: Blue Gene/Q Application Development

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Blue Gene/P®
Blue Gene/Q®
Blue Gene®
GPFS™

IBM®
LoadLeveler®
PowerPC®
Power®
Redbooks®

Redpapers™
Redbooks (logo) ®
Tivoli®

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
 Notices ix

http://www.ibm.com/legal/copytrade.shtml

x IBM System Blue Gene Solution: Blue Gene/Q Application Development

Preface

This IBM® Redbooks® publication is one in a series of IBM books written specifically for the
IBM System Blue Gene® supercomputer, Blue Gene/Q®, which is the third generation of
massively parallel supercomputers from IBM in the Blue Gene series. This document
provides an overview of the application development environment for the Blue Gene/Q
system. It describes the requirements to develop applications on this high-performance
supercomputer.

This book explains the unique Blue Gene/Q programming environment. This book does not
provide detailed descriptions of the technologies that are commonly used in the
supercomputing industry, such as Message Passing Interface (MPI) and Open
Multi-Processing (OpenMP). References to more detailed information about programming
and technology are provided.

This document assumes that readers have a strong background in high-performance
computing (HPC) programming. The high-level programming languages that are used
throughout this book are C/C++ and Fortran95. For more information about the Blue Gene/Q
system, see “IBM Redbooks” on page 159.

Author

This book was produced by a team working at the International Technical Support
Organization (ITSO), Rochester Center.

Megan Gilge is a Technical Writer in the IBM International Technical Support Organization.
Before joining the ITSO one year ago, Megan was an Information Developer in the IBM
Semiconductor Solutions and User Technologies areas. Megan holds a B.A. in Liberal Arts
from Michigan Technological University.

Thanks to the following people for their contributions to this project:

Robert E. Walkup
IBM Research

John Attinella
Mike Blocksome
Lynn Boger
Thomas Budnik
Kristan Davis
Mitchell Felton
Thomas Gooding
Jerrold Heyman
Kerry Kaliszewski
Gary Lakner
Tom Liebsch
Mike Nelson
Jeffrey Parker
© Copyright IBM Corp. 2013. All rights reserved. xi

Brian Smith

IBM Systems & Technology Group

Annette Bauerle
International Technical Support Organization

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xii IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xiii

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xiv IBM System Blue Gene Solution: Blue Gene/Q Application Development

Summary of changes

This section describes the technical changes made in this edition of the book and in previous
editions. This edition might also include minor corrections and editorial changes that are not
identified.

Summary of Changes
for SG24-7948-01
for IBM System Blue Gene Solution: Blue Gene/Q Application Development
as created or updated on February 12, 2014.

June 2013, Second Edition

This revision reflects the addition, deletion, or modification of new and changed information
described below.

New information
� Added information 3.11.6, “Extended thread affinity control” on page 20.

� Added 4.6, “Compute node ramdisk” on page 30

� Added 4.7, “Support for the /proc file system” on page 31

� Added 4.8, “L1P prefetcher” on page 32

� Added information about kernel SPI documentation to 5.2.2, “System programming
interface” on page 62.

� Added information about rdma.h and sendx.h to Table 5-4 on page 63.

� Added 5.3, “System calls” on page 63.

� Added 6.7, “Multiple Program, Multiple Data” on page 77.

� Added 8.4, “Debugging jobs” on page 113.

� Added Appendix G, “Requirements for C++ programming in a failover environment” on
page 155.

Changed information
� Removed PAMID_COLLECTIVES_SELECTION from Table D-1 on page 130. Updated

information for the PAMI_GLOBAL_SHMEMSIZE, PAMI_ROUTING,
PAMID_DISABLE_INTERNAL_EAGER_TASK_LIMIT, PAMID_EAGER_LOCAL,
PAMID_RZV_LOCAL, PAMID_EAGER, PAMID_RZV, PAMID_PT2PT_LIMITS,
PAMID_RMA_PENDING, PAMID_SHORT variables.

� Updated information about the BG_COREDUMPBINARY, BG_COREDUMPMAXNODES,
BG_COREDUMPRANKS, BG_MAPCOMMONHEAP, BG_MAPNOALIASES,
BG_MAPALIGN16, BG_THREADLAYOUT, and BG_THREADMODEL variables in
Table D-5 on page 142.
© Copyright IBM Corp. 2013. All rights reserved. xv

xvi IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 1. System overview

This chapter provides an overview of the IBM Blue Gene/Q system and its software
environment. It includes the following sections:

� Blue Gene/Q environment overview
� Blue Gene/Q hardware overview
� Blue Gene/Q software overview

1

© Copyright IBM Corp. 2013. All rights reserved. 1

1.1 Blue Gene/Q environment overview

The Blue Gene/Q system, shown in Figure 1-1, is the third-generation computer architecture
in the Blue Gene family of supercomputers.

Figure 1-1 Blue Gene/Q system architecture

The Blue Gene/Q system comprises multiple components including one or more compute
racks and optionally I/O racks. The system contains densely packaged compute nodes, I/O
drawers, and service cards. Additional hardware is associated with the storage subsystem,
the primary service node (SN), the front end nodes (FENs), and the communications
subsystem. The I/O drawers containing I/O nodes connect to the functional local area
network (LAN) to communicate with file servers, FENs, and the SN. The service cards
connect to the control subnets and are used by the SN to control the Blue Gene/Q hardware.

A service node provides a single point of control and administration for the Blue Gene/Q
system. It is possible to operate a Blue Gene/Q system with a single service node. However,
the system environment can also be configured to include distributed subnet service nodes
(SSN) for high scalability. System administration is outside the scope of this book and is
covered in the IBM System Blue Gene Solution: Blue Gene/Q System Administration,
SG24-7869 Redbooks publication.

A front end node, also known as a login node, comprises the system resources that
application developers log in to for access to the Blue Gene/Q system. Application developers
edit and compile applications, create job control files, launch jobs on the Blue Gene/Q
system, post-process output, and perform other interactive activities.

Service
node

Users

File servers

10 Gbps

InfiniBand QDR
or 10 Gbps

10 Gbps typical

Private network
for service node
and Blue Gene/Q

Front end nodes

Functional
LAN

Control
subnets

1 Gbps

Site
LAN

I/O nodes
2 IBM System Blue Gene Solution: Blue Gene/Q Application Development

1.2 Blue Gene/Q hardware overview

Figure 1-2 shows the primary hardware components of the Blue Gene/Q system.

Figure 1-2 Blue Gene/Q hardware overview

Compute cards contain 16 IBM Blue Gene/Q PowerPC® A2 core processors and 16 GB of
memory. Thirty-two such cards plug into a node board and 16 node boards are contained in a
midplane. A Blue Gene/Q compute rack has either one (half rack configuration) or two fully
populated midplanes. The system can be scaled to 512 compute racks.

Compute racks components are cooled either by water or air. Water is used for the
processing nodes. Air is used for the power supplies and the I/O drawers mounted in the Blue
Gene/Q rack.

I/O drawers are either in separate racks or in I/O enclosures on top of the compute racks,
sometimes described as top hats. Eight I/O nodes are housed in each I/O drawer. In the
compute rack, up to four I/O drawers, two per midplane, can be configured using the I/O
enclosure (top hat). The placement of I/O drawers in the I/O rack configuration is advisable in
a large system installation where the number of I/O nodes cannot be accommodated in the
compute racks.

For an introduction to the Blue Gene/Q hardware components, see the Blue Gene/Q
Hardware Overview and Installation Planning Guide, SG24-7822 Redbooks publication.

~2.1 GF/WPower efficiency*

Per rack

*Without optical interconnect

~170+ TF
Sustained
(Linpack)

209 TFPeak performance

4. Node board
32 compute cards,
optical modules,
link chips, torus

5a. Midplane
16 node boards

6. Rack
1 or 2 midplanes

0, 1, 2, or 4 I/O drawers
7. Multi-rack system

5b. I/O drawer
8 I/O cards with 16 GB

8 PCIe Gen2 slots

1. Chip
16 cores

2. Module
Single chip

3. Compute card
One single chip module,
16 GB DDR3 memory
Chapter 1. System overview 3

1.3 Blue Gene/Q software overview

The Blue Gene/Q software includes the following features:

� Scalable Blue Gene/Q system administration and management services running on
service nodes, subnet service nodes, and front end nodes

� Compute Node Kernel (CNK) running on the compute nodes

� Full Linux kernel running on I/O nodes

� Message Passing Interface (MPI) between compute nodes through MPI library support

� Open multi-processing (OpenMP) application programming interface (API)

� Support for the standard IBM XL family of compilers with XLC/C++, XLF, and the GNU
Compiler Collection

� Software support that includes IBM Tivoli® Workload Scheduler LoadLeveler®, IBM
General Parallel File System (GPFS™), and Engineering and Scientific Subroutine Library
(ESSL)

� Support for running Python applications

� Support for debuggers including GNU Project Debugger (GDB)

1.3.1 System administration and management

The responsibilities of a Blue Gene/Q system administrator can be wide-ranging, but the
administrator typically maintains and monitors the health of the Blue Gene/Q system. Most of
the system administrator tasks are performed from the service node. The Navigator web
application that runs on the service node plays an important role in helping administrators
perform their job. The IBM System Blue Gene Solution: Blue Gene/Q System Administration,
SG24-7869 Redbooks publication provides a comprehensive description of administering a
Blue Gene/Q system, including how to use the key features of Navigator, manage compute
and I/O blocks, run diagnostics, perform service actions, use the console, handle alerts,
manage various servers, submit and manage jobs, and configure I/O nodes.

1.3.2 Compute Node Kernel and services

The Compute Node Kernel (CNK) software is an operating system that is similar to Linux and
provides an environment for running user processes on compute nodes. The CNK includes
the following services:

� Process creation and management
� Memory management
� Process debugging
� Reliability, availability, and serviceability (RAS) management
� File I/O
� Network

The Blue Gene/Q software stack includes a standard set of runtime libraries for C, C++, and
Fortran. To the extent that is possible, the supported functions maintain open standard
Portable Operating System Interface (POSIX)-compliant interfaces. The CNK has a robust
threading implementation on the Blue Gene/Q system that supports pthread, XL OpenMP,
and GNU OpenMP implementations. The Native POSIX Thread Library (NPTL) pthreads
implementation in the GNU C Library (GLIBC) runs without modification.
4 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Although statically linked executable programs provide optimal performance, the CNK also
has support for dynamically linked executable programs. This support enables dynamically
linked scripting languages, such as Python, to be used in CNK environments.

For more information about the Compute Node Kernel, see 2.1, “Compute Node Kernel” on
page 10.

1.3.3 I/O node kernel and services

The I/O node kernel is a patched Red Hat Enterprise Linux 6 kernel running on I/O nodes.
The patches provide support for the Blue Gene/Q platform and contain modifications to
improve performance.

The I/O node software provides I/O services to compute nodes. For example, applications
that are running on compute nodes can access file servers and communicate with processes
in other machines. The I/O nodes also play an important role in starting and stopping jobs and
in coordinating activities with debug and monitoring tools.

Blue Gene/Q is a diskless system, so file servers must be present. A high-performance
parallel file system is expected. The Blue Gene/Q system is flexible and accepts various file
systems that are supported by Linux. Typical parallel file systems are the IBM General
Parallel File System (GPFS) and Lustre.

The I/O node includes a complete internet protocol (IP) stack with Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) services. A subset of these services is
available to user processes running on the compute nodes that are associated with an I/O
node. Application processes communicate with processes that are running on other systems
with client-side sockets. Support for server-side sockets is also provided. The I/O node
implements the sockets so that a group of compute nodes behave as though the compute
tasks are running on the I/O node. In particular, this means that the socket port number is a
single address space within the group. The compute nodes share the IP address of the I/O
node.

The I/O node kernel is designed to be booted as infrequently as possible. The bootstrap
process includes loading a ramdisk image and booting the Linux kernel. The ramdisk image is
extracted to provide the initial file system. This system contains minimal commands to mount
the file system on the service node using the Network File System (NFS). The boot continues
by running startup scripts from the NFS. It also runs customer-supplied startup scripts to
perform site-specific actions, such as logging configuration and mounting high-performance
file systems.

Toolchain shared libraries and all of the basic Linux text and shell utilities are local to the
ramdisk. Packages, such as GPFS, and customer-provided scripts are NFS mounted for
administrative convenience.

A complete description of the I/O node software is provided in the IBM System Blue Gene
Solution: Blue Gene/Q System Administration, SG24-7869 Redbooks publication.

1.3.4 Message Passing Interface

The implementation of the Message Passing Interface (MPI) on the Blue Gene/Q system is
the MPICH2 standard that was developed by Argonne National Labs. For more information
about MPICH2, see the Message Passing Interface (MPI) standard website at:

http://www-unix.mcs.anl.gov/mpi/
Chapter 1. System overview 5

http://www-unix.mcs.anl.gov/mpi/

The dynamic process management function (creating new MPI processes) of the MPI-2
standard is not supported by the Blue Gene/Q system. However, the various thread modes
are supported.

1.3.5 Compilers

The Blue Gene/Q toolchain compilers and the IBM XL compilers for Blue Gene/Q compute
nodes are available for use on the Blue Gene/Q system. Because compilation occurs on the
front end node and not the Blue Gene/Q system, the compilers for the Blue Gene/Q system
are cross-compilers. See 7.2, “Compilers for the Blue Gene/Q system” on page 80 for more
information about compilers.

GNU compilers
The compilers in the Blue Gene/Q toolchain are based on the GNU compilers. When
installing the Blue Gene/Q software, RPM package managers (RPMs) are provided so that
the user can build and install the Blue Gene/Q toolchain into the gnu-linux directory of the
software stack. The Blue Gene/Q toolchain compilers are used to build much of the Blue
Gene/Q system software and provide the base libraries for user applications. They can be
used to build applications to run on the Blue Gene/Q compute nodes. See 7.2.2, “GNU
Compiler Collection” on page 81 for more information about the GNU compilers.

IBM XL compilers
The IBM XL compilers for Blue Gene/Q can be used to build applications that run on the Blue
Gene/Q system. The IBM XL compilers can provide higher levels of optimization than the
Blue Gene/Q toolchain compilers. The XL compilers for Blue Gene/Q support single
instruction, multiple data (SIMD) vectorization (simdization). Simdization enables automatic
code generation to use the quad floating-point unit (FPU) of the Blue Gene/Q system. This
unit can handle four simultaneous floating-point instructions. The Blue Gene/Q XL compilers
also provide support for source code syntax to use transactional memory and speculative
threads. See 7.2.1, “IBM XL compilers” on page 80 for more information about the IBM XL
compilers.

MPI wrapper scripts for Blue Gene/Q compilers
The MPI wrapper scripts are compiler wrapper scripts that are provided in the Blue Gene/Q
driver. These scripts can be used to compile and link programs that use MPI. Various MPI
scripts are available, depending on which compiler is used to compile the code and the
version of the libraries to be linked. The wrapper scripts start the appropriate compiler and
add all necessary directories, libraries, and options that are required to compile programs for
MPI. For each compiler language and standard that is provided for the Blue Gene/Q system,
there is a corresponding MPI wrapper script. There are also thread-safe versions for each of
the IBM XL compilers. The MPI wrapper scripts are described in 6.5, “Compiling MPI
programs on the Blue Gene/Q system” on page 74.

For more detailed compiler information, see Chapter 7, “Developing applications with Blue
Gene/Q compilers” on page 79.

1.3.6 Application development and debugging

Application developers access front end nodes to compile and debug applications, submit
Blue Gene/Q jobs, and perform other interactive activities.
6 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Debuggers
The Blue Gene/Q system includes support for running GNU Project Debugger (GDB) with
applications that run on compute nodes. Other third-party debuggers are also available. See
8.2, “Debugging applications” on page 104.

Running applications
Blue Gene/Q applications can be run in several ways. The most common method is to use a
job scheduler that supports the Blue Gene/Q system, such as the LoadLeveler scheduler.
Another less common option is to use the runjob command directly. All Blue Gene/Q job
schedulers use the runjob interface for job submission, but schedulers can wrap it with
another command or job submission interface. The runjob command is described in the IBM
System Blue Gene Solution: Blue Gene/Q System Administration, SG24-7869 Redbooks
publication.

For more information about the LoadLeveler scheduler, see 8.1.1, “IBM LoadLeveler” on
page 104.

Application memory considerations
On the Blue Gene/Q system, the entire physical memory of a compute node is 16 GB, so
careful consideration of memory is required when writing applications. Some of that space is
allocated for the CNK. Shared memory space is also allocated to the user process at the time
the process is created.

The CNK tracks collisions of the stack and heap as the heap is expanded with brk() and
mmap() system calls. The CNK and its private data are protected from reads and writes by
the user process or threads. The code space of the process is protected from writing by the
process or threads. Code and read-only data are shared between the processes that share
each node.

The amount of memory required by the application is an important topic for Blue Gene/Q. The
memory used by an application falls into one of the following classifications:

bss Uninitialized static and common variables
data Initialized static and common variables
heap Controlled allocatable arrays
stack Controlled automatic arrays and variables
text Application text (instructions) and read-only data

The Blue Gene/Q system implements a 64-bit memory model. You can use the Linux size
command to display the memory size of the program. However, the size command does not
provide any information about the runtime memory usage of the stack or heap.

The memory that is available to the application depends on the number of processes per
node. The 16 GB of available memory is partitioned as evenly as possible among the
processes on each node. Because memory is a limited resource, it is generally advisable to
conserve memory in the application. In some cases, the memory requirement can be reduced
by distributing data that was replicated in the original code. However, additional
communication might be required. On Blue Gene/Q systems, the total number of processes
can be large. Consider the memory that is required to store arrays that have the number of
processes as one or more of the array dimensions.

Other considerations
It is important to understand that the operating system present on the compute node, the
CNK, is not a full version of the Linux operating system. Therefore, use care in the areas
Chapter 1. System overview 7

explained in the following sections when writing applications for the Blue Gene/Q system. For
a full list of supported system calls, see 5.3, “System calls” on page 63.

Input and output
Pay special attention to I/O in your application. The CNK does not perform I/O. I/O is
managed by the I/O node.

File I/O
A limited set of file I/O is supported. Do not attempt to use asynchronous file I/O because it
causes runtime errors.

Standard input
Standard input (stdin) is supported on the Blue Gene/Q system.

Socket calls
Socket calls are supported on the Blue Gene/Q system. For more information, see Chapter 5,
“Compute Node Kernel interfaces” on page 55.

Linking
Dynamic linking is supported on the Blue Gene/Q system. You can statically link all code into
your application or use dynamic linking.

Shell scripts
The CNK does not provide a mechanism for a command interpreter or shell when
applications start on the Blue Gene/Q system. Only the executable program can be started.
Therefore, if the application includes shell scripts that control workflow, the workflow must be
adapted. For example, an application workflow shell script cannot be started with the runjob
command. Instead, run the application workflow scripts on the front end node and start the
runjob command only at the innermost shell script level where the main application binary is
called.
8 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 2 Kernel functionality

The kernel provides the glue that makes all components in Blue Gene/Q system work
together. This chapter provides an overview of the functionality that is implemented as part of
the Compute Node Kernel (CNK) and the I/O node kernel, which includes information about
the following topics:

� Compute Node Kernel
� Role of the I/O node kernel

2

© Copyright IBM Corp. 2013. All rights reserved. 9

2.1 Compute Node Kernel

The CNK is a flexible, lightweight kernel for Blue Gene/Q compute nodes that can support
diagnostic modes and user applications. It provides an operating system that is similar to the
Linux operating system and supports a large subset of Linux-compatible system calls. This
subset is based on the IBM Blue Gene/P® system, which demonstrated good compatibility
and portability with the Linux operating system. The CNK is tuned for the capabilities and
performance of the Blue Gene/Q application-specific integrated circuit (ASIC).

As part of the Blue Gene/Q system, the CNK supports threads and dynamic linking for further
compatibility with the Linux operating system. Figure 2-1 shows the interaction between the
application space and the kernel space.

Figure 2-1 Compute Node Kernel overview

When running a user application, the CNK connects to the I/O node through the torus
network. This connection communicates to a set of processes called Control and I/O
Services (CIOS) that run on the I/O node. All function-shipped system calls are forwarded to
the CIOS process and executed on the I/O node.

Firmware

Common node services

Bootloader torus

Blue Gene/Q hardware devices

CNK

MU

Hardware
configuration

Job
control

Memory
manager

Shared
memory

Topology File I/O Sockets Signals
Process and

thread
management

CNVerbs
(Function Shipping Transport layer)

Syscall interface

User Application

GLIBC runtime (including pthreads)SPI

MPI OpenMP ESSL

I/O services
on I/O node

MUDM
10 IBM System Blue Gene Solution: Blue Gene/Q Application Development

At the user-application level, the Compute Node Kernel supports the following application
programming interfaces (APIs) among others:

� Message Passing Interface (MPI) support between nodes using MPI library support

� Open multi-processing (OpenMP) API

� Standard IBM XL family of compilers support with XLC/C++, XLF, and GNU Compiler
Collection

� Highly optimized mathematical libraries, such as IBM Engineering and Scientific
Subroutine Library (ESSL)

� GNU Compiler Collection (GCC) C Library, or GLIBC, which is the C standard library and
the GCC interface.

The CNK provides the following services:

� Torus direct memory access (DMA), which provides memory access for reading, writing,
or doing both independently of the processing unit. The DMA torus interfaces are made
available to the user space, which allows communication libraries to send messages
directly from the application without involving the kernel. The kernel, with the hardware,
implements secure limit registers that prevent the DMA from targeting memory outside the
application. These constraints, along with the electrical partitioning of the torus, provide
security between applications.

� Shared-memory access on a local node

� Hardware configuration

� Memory management

� MPI topology

� File I/O

� Sockets connection

� Signals

� Thread management

� Transport layer through the torus network

2.1.1 Stateless compute nodes

The Blue Gene/Q hardware is a stateless system with no embedded read-only memories
(ROMs) or resident basic input/output system (BIOS). When the hardware is reset, the
Control System must load the operating system into the memory of each compute node. It
accomplishes this process in two phases:

� Phase 1 loads a small firmware component into the embedded random access memory
(RAM) on each compute node. This firmware starts executing and initializes critical pieces
of the Blue Gene/Q chip.

� Phase 2 communicates over a custom protocol to download the rest of the kernel images.
These kernel images are then executed, allowing for connectivity over the torus network.

2.1.2 Firmware

The firmware component provides low-level services that are both specific to Blue Gene and
common to the Linux operating system and the Compute Node Kernel. As such, these
services provide a consistent implementation across node types while insulating the kernels
from the details of the Control System. The common node services provide the same
Chapter 2 Kernel functionality 11

low-level hardware initialization and setup interfaces to both the Linux operating system and
the Compute Node Kernel.

2.2 Role of the I/O node kernel

The I/O node kernel provides I/O services to compute nodes and runs on I/O nodes. The I/O
nodes also play an important role in starting and stopping jobs and in coordinating activities
with debug and monitoring tools.

The operating system that runs on the I/O nodes is a distribution of Red Hat Enterprise
Linux 6 for IBM PowerPC. IBM System Blue Gene Solution: Blue Gene/Q System
Administration, SG24-7869 describes setup and configuration of the operating system. The
I/O node is not apparent to the application, but it is important to consider the I/O node when
tuning I/O performance.
12 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 3. Processes

The compute nodes on the Blue Gene/Q system comprise 17 cores on a single chip with
16 GB of dedicated physical memory. Applications run on 16 of the cores with the 17th core
reserved for system software. Nearly the full 16 GB of physical memory is dedicated to
application usage.

Within each job, processes (also known as tasks) are distributed to all of the compute nodes.
Each node runs separate instantiations of the Compute Node Kernel (CNK). Each CNK can
run multiple tasks or processes. This chapter describes some of the characteristics of those
processes and how to configure them.

3

© Copyright IBM Corp. 2013. All rights reserved. 13

3.1 Importance of process count

When submitting a job to the Blue Gene/Q system with the runjob command or another job
scheduler command, it is important to decide how many processes or tasks to run on each
node. This decision significantly impacts performance and the memory that is allocated to
each process, for example:

� Running 16 processes per node divides the total number of cores and the total physical
memory into 16ths. Thus, one core and roughly 1 GB is available to each task.

� Running one process with 16 threads might yield equivalent performance but causes no
subdivision of the memory layout.

When a job is submitted to the Control System, the user specifies the number of processes to
create. This value is used in the configuration of memory and number of cores assigned to
the process.

3.2 Process creation

Jobs are submitted to the CNK through the Control System using the functional network path
through the I/O node to load the application. A job can be a subset of the block. Multiple jobs
comprising one or more node jobs can exist per block. However, a single job cannot span
blocks. From a CNK perspective, jobs comprise one or more processes to the node. With
each job, the Control System provides information that describes the environment of the job
(environment variables, program arguments, and so on).

For statically linked applications, the CNK loads the applications into memory at process
creation time. To ensure that the application load scales to large system configurations, the
application is loaded from a job leader node and broadcast to the other nodes in the job.

For dynamically linked applications, the CNK loads the dynamic interpreter (ld.so) into
memory. The interpreter then pulls the target application and associated dynamic libraries
into main memory by using standard system calls.

Processes are only created at the time of job initialization. The CNK does not support the fork
system call and therefore cannot dynamically spawn processes.

3.3 Processes per node

When a job is submitted to the Control System, the user specifies the number of processes to
create. This value is used to configure memory and the number of cores that are assigned to
the process. To specify the process count, use the runjob -p (or --ranks-per-node) option.

When the user specifies the process count per node, the memory on that node is divided
evenly among the processes. Generally, each process has roughly the same amount of
memory, although there can be slight variations. Variations can be because of the size of the
application text, shared memory size, kernel storage, and so on. The CNK configures the
hardware to avoid memory page translations while the application is running. This
configuration is known as a static memory map.

To achieve a static memory map, the process count must be a power of two. Thus, the valid
numbers are 1, 2, 4, 8, 16, 32, or 64 processes per node. User submitted jobs run on 16 of
the 17 cores.
14 IBM System Blue Gene Solution: Blue Gene/Q Application Development

The CNK allocates a number of cores to a process. Therefore, as shown in Table 3-1, the
number of threads that each process can have active at a given moment is dictated by the
processes per node value.

Table 3-1 Processes per node

3.4 Determining how many processes per node to use

The best configuration of processes per node depends on the type of application, the memory
requirement, and the parallel paradigm that is implemented. There might be several options
for applications that use a hybrid paradigm with both MPI and OpenMP or pthreads,
depending on the memory footprint. Hybrid applications that support a high degree of
threading might work well with a single process per node, but scenarios with 2, 4, 8, or 16
processes per node are more common. For single-threaded applications, the memory
requirement per process is the main consideration. If possible, use all 16 of the cores with 16,
32, or 64 processes per node.

One trade off to consider is that each additional process that is running on a node has a fixed
amount of overhead. Overhead consists of a replicated data segment (for example, the global
storage for the process), storage for the main stack, and storage for the heap.

3.5 Specifying process count

The default mode for the runjob command is one process per node. To specify other values
for processes per node, use the following commands:

runjob ... -p 2 ...
runjob ... --ranks-per-node 2 ...
runjob ... -p 16 ...
runjob ... -p 64 ...

Processes per node Number of A2 cores per
process

Maximum number of
active hardware
threads per process

1 16 64

2 8 32

4 4 16

8 2 8

16 1 4

32 2 processes per core 2

64 4 processes per core 1
Chapter 3. Processes 15

3.6 Support for 64-bit applications

The Blue Gene/Q system only supports processes compiled for the 64-bit PowerPC
application binary interface (ABI). 32-bit processes are not supported:

� For compilations with the GCC compiler, the -m64 flag is the default.
� For compilations with the XL compiler, the -q64 flag is the default.

3.7 Object identifiers

There are various identifiers related to the process objects on the compute node. Each of the
16 physical cores that support the application processes is assigned a processor core
identifier. Each of the four hardware threads within that core is assigned a processor thread
identifier. There is also a unique identifier for each hardware thread within the node termed
the processor identifier. Table 3-2 describes the interrelationship between these hardware
identifiers. The first 16 cores are used to run applications. The 17th core is reserved for
system use.

Table 3-2 Physical core ID, thread ID, and processor ID

3.7.1 Process identifier

The process identifier (PID) is a 4-byte signed number that identifies a process. Each process
on a compute node has a unique PID. The PID value is not unique across compute nodes.

Processor core ID Processor thread ID Processor ID

0 0, 1, 2, 3 0, 1, 2, 3

1 0, 1, 2, 3 4, 5, 6, 7

2 0, 1, 2, 3 8, 9, 10, 11

3 0, 1, 2, 3 12, 13, 14, 15

4 0, 1, 2, 3 16, 17, 18, 19

5 0, 1, 2, 3 20, 21, 22, 23

6 0, 1, 2, 3 24, 25, 26, 27

7 0, 1, 2, 3 28, 29, 30, 31

8 0, 1, 2, 3 32, 33, 34, 35

9 0, 1, 2, 3 36, 37, 38, 39

10 0, 1, 2, 3 40, 41, 42, 43

11 0, 1, 2, 3 44, 45, 46, 47

12 0, 1, 2, 3 48, 49, 50, 51

13 0, 1, 2, 3 52, 53, 54, 55

14 0, 1, 2, 3 56, 57, 58, 59

15 0, 1, 2, 3 60, 61, 62, 63

16 0, 1, 2, 3 64, 65, 66, 67
16 IBM System Blue Gene Solution: Blue Gene/Q Application Development

The PID can be passed to various pthreads, signal APIs, and system calls as a thread group
identifier (TGID) for the process. The thread identifier (TID) that corresponds to the primary
thread of the process is the same value as the PID for the process.

3.7.2 Thread identifier

The thread identifier (TID) is a number assigned by the kernel used to uniquely identify a
thread within the node. The TID of the process’ main thread is the same as the PID of the
process. See 3.7.1, “Process identifier” on page 16 for more information about PID number
generation.

3.7.3 Thread group identifier

The thread group identifier (TGID) is an input parameter on several pthread and signal APIs
and system calls. The PID (that is, the main thread TID of the process) serves as a valid
TGID.

3.7.4 T coordinate

Multiple processes within a node for a given job are assigned a “T” coordinate value. That
value can be used with the A, B, C, D, and E coordinates to uniquely identify a specific
process or rank in the block or sub-block. The “T” coordinates begin at 0 and are assigned in
sequential order to a value that is equal to the number of processes minus one. For example,
if the node is configured to contain four processes, the “T” coordinates range from 0 to 3. The
coordinate T = 0 corresponds to the first process containing processor IDs 0 - 15. The
coordinate T = 3 corresponds to the last process containing processor IDs 48 - 63. Each
unique rank within a job is identified by a corresponding set of A, B, C, D, E, T coordinates.

3.8 Sub-node jobs

The compute node kernel supports sub-block jobs within a node. A sub-node, sub-block job is
known as a sub-node job. A sub-node job occupies a subset of the 16 cores available for
assignment to applications. Jobs that are running in a subset of the 16 cores in the node can
be started and ended asynchronously. Only one core per sub-node job is supported. Only
one process per node in a sub-node job is supported. Sub-node jobs are restricted to a single
user per node.

3.9 Threading overview

The CNK provides a threading model based on the Native Portable Operating System
Interface (POSIX) Thread Library (NPTL) available in the glibc library. The NPTL package is
the default threading package for Linux applications. The NPTL threading package
implements the POSIX pthread API. The NPTL package allows the same POSIX pthread API
library that Linux uses (-lpthreads) to function on the CNK without special parameters.

3.9.1 Hardware thread over-commitment

More than one pthread can be assigned to a given hardware thread. These additional
pthreads are supported by additional kernel thread structures (that is, an M:N threading
Chapter 3. Processes 17

model of 1:1). By default, five pthreads can be assigned to one hardware thread. In the Blue
Gene/Q threading model, pthreads have absolute affinity to the hardware threads they are
associated with. There is no time-quantum driven preemption of pthreads running on a
hardware thread. After a pthread begins to run on a hardware thread, it continues to run until
one of the following occurs:

� The thread calls pthread_yield(), and an equal or higher-priority thread available for
dispatch is found.

� A signal is being delivered to a higher-priority pthread on the same hardware thread.

� The thread enters a futex wait condition.

� The thread enters a nanosleep system call.

� A new pthread is created on this hardware thread or is migrated to this hardware thread.
Its priority is higher than the currently running thread.

� The priority of the running thread is lower or the priority of a thread that is ready to run on
the same hardware thread is raised such that a more eligible thread is now available to be
dispatched.

� The thread exits.

� A nanosleep previously initiated by a higher-priority pthread on the same hardware thread
expires.

� A timed futex wait previously initiated by a higher-priority pthread on the same hardware
thread expires.

3.10 Thread scheduler

The kernel scheduler runs on each hardware thread independently. Each local dispatcher
handles the dispatching of the software threads assigned to the one hardware thread that it
controls. There is no global dispatcher. Therefore, no global locks or blocking conditions are
required to manage the dispatching of threads.

3.10.1 Thread preemption

A pthread is preempted when and only when a pthread with a strictly higher software priority
is available to be run on the same hardware thread. This scenario can occur for the following
reasons:

� A futex-wait by a higher-priority pthread is satisfied.

� A signal is delivered to a higher-priority pthread.

� A new pthread with a higher software priority is created on, or is migrated to, this hardware
thread.

� The software priority of the current pthread is lowered, or the priority of another pthread on
the same hardware thread is raised.

� A nanosleep initiated by a higher-priority pthread on the same hardware thread expires.

� A timed futex wait initiated by a higher-priority pthread on the same hardware thread
expires.
18 IBM System Blue Gene Solution: Blue Gene/Q Application Development

3.10.2 Thread yield

When a pthread executes a pthread_yield() function and another pthread with the same
software priority is available to be dispatched, the current thread relinquishes control. The
other thread is dispatched. If there is no other runnable thread of equal or higher-priority,
control returns to the thread that executed the pthread_yield() function.

3.10.3 Round-robin dispatch

A thread relinquishes control due to a yield or a futex wait. If there are other pthreads with the
same software priority, those pthreads are selected over the current thread for the next
dispatch in a round-robin order. In other words, when there are multiple equal-priority
pthreads on a hardware thread, and each pthread issues frequent yields, each of the
pthreads makes progress. There is no guarantee that each thread will make equal progress.
Interrupt conditions presented to the hardware thread might cause unbalanced thread
dispatching within the scheduler's simple, light-weight, round-robin algorithm.

3.11 Thread affinity

When a pthread is created within a process, the CNK must select a hardware thread for the
pthread. The kernel supports two layout algorithms for assigning pthreads to hardware
threads. The number of hardware threads that are available to the process is dependent on
the number of processes in the node. See 3.3, “Processes per node” on page 14. The layout
types in the following sections can be activated through the use of an environment variable,
BG_THREADLAYOUT. If required, additional layout algorithms can be added. When possible,
the even-numbered processor IDs within the process are assigned before the odd-numbered
processor IDs because of the configuration limitations that are imposed by the hardware
universal performance counter implementation.

3.11.1 Breadth-first assignment

Breadth-first is the default thread layout algorithm. This algorithm corresponds to
BG_THREADLAYOUT = 1. With breadth-first assignment, the hardware thread-selection
algorithm progresses across the cores that are defined within the process before selecting
additional threads within a given core.

3.11.2 Depth-first assignment

This algorithm corresponds to BG_THREADLAYOUT = 2. With depth-first assignment, the
hardware thread-selection algorithm progresses within each core before moving to another
core defined within the process.

3.11.3 Thread affinity control

Controlling the placement of pthreads on the existing hardware threads is supported by the
kernel through the sched_setaffinity() system call. The target of the affinity operation must be
one and only one hardware thread. The interface to specify the target hardware thread is
defined by the glibc structure, cpu_set_t. The CPU numbers to be specified by the caller
correspond to the processor IDs 0 - 63. The caller must be aware of the range of valid
processor IDs for the current process. For a configuration where there is one process on the
node, all processor IDs are owned by the process. However, on a system that has four
Chapter 3. Processes 19

processes in the node, the first process owns processor IDs 0 - 15. The second process owns
processor IDs 16 - 31. Determining what processor IDs are controlled by a given process can
be accomplished by using the Kernel_ThreadMask(T) and the Kernel_MyTcoord() SPIs. After
the T coordinate is obtained using the Kernel_MyTcoord system programming interface (SPI),
supply it to the Kernel_ThreadMask(T) SPI. The SPI returns a 64-bit mask representing the
processor IDs owned by the currently running process.

There are two methods to set the affinity of a pthread. The first method is at pthread creation
time through the pthread attributes structure. The second method is explicitly through the
set_affinity system call.

3.11.4 Setting affinity with the pthread attribute

Example 3-1 shows how to set affinity with the pthread attributes at pthread creation.

Example 3-1 Setting affinity through the pthread attributes

pthread_attr_t attr; // create an attribute object
cpu_set_t cpumask; // create a cpu mask object
pthread_attr_init(&attr); // initialize an attribute object
CPU_ZERO(&cpumask); // initialize the cpu mask
CPU_SET(processorID, &cpumask);
pthread_attr_setaffinity(&attr, CPU_SETSIZE, &cpumask);
rc = pthread_create(&thread[t], &attr, myThreadFunction, NULL);

3.11.5 Setting affinity with the system call

The following code example shows how to set explicit affinity with the system call.

Example 3-2 Setting affinity using the system call

cpu_set_t mask;
CPU_ZERO(&mask); /* CPU_SET sets only the bit corresponding to cpu. */
CPU_SET(processorID, &mask); /* pthread_setaffinity returns 0 in success */
if(pthread_setaffinity_np(tid, sizeof(mask), &mask) == -1)
{
printf("WARNING: Could not set CPU Affinity, continuing...\n");
}

3.11.6 Extended thread affinity control

Extended thread affinity control is a facility that allows a process to place, using set affinity,
software threads on hardware threads that were not originally allocated to that process. This
feature is useful in application environments where an application might enter different
phases of execution that require a larger number of threads to be used by a subset of the
processes in a node while other processes in the node are not actively using their threads.

Enablement
An environment variable is used to enable the extended thread affinity control facility. If the
BG_THREADMODEL environment variable is set to the value 2, set affinity APIs can be used
to place a pthread onto a hardware thread that is not configured as a hardware thread owned
by the current process. See Table D-5 on page 142 for more information about the
BG_THREADMODEL variable.
20 IBM System Blue Gene Solution: Blue Gene/Q Application Development

For example, if the application must transition between 16 active processes, each using four
hardware threads, to four active processes, each using 16 hardware threads, the application
is started with 16 processes configured. Each process creates its pthreads using the
pthread_create() function. Each of the four processes can use the pthread_create() function
to create up to a total of 16 threads and use the setaffinity API interfaces to place these
pthreads on hardware threads outside its configured set of hardware threads. When the
application reaches the end of its first phase, 12 of the 16 processes block using a standard
POSIX synchronization mechanism, such as a shared mutex, condition, or barrier. Then the
four remaining processes begin running their additional pthreads using the additional
hardware threads that were previously used by the now blocked 12 processes. When this
phase of the application completes, the processes are unblocked and the application returns
to its original behavior of having 16 active processes each using four hardware threads.

Usage restrictions
The following restrictions apply to the extended thread affinity control facility:

� The job must be configured with 2, 4, 8, or 16 ranks per node.

� A core can host the originally configured process plus 1, 2, 3, or 4 additional threads of
any one additional process within the node.

� MPI operations are not supported for pthreads that are executing on a hardware thread
that was not originally configured to a pthread’s process.

� Memory allocation across the processes in the node is based exclusively on the initial
memory configuration at job start time.

� Transactional memory and thread level speculation operations are not supported on
pthreads that are executing on a hardware thread not originally configured to a pthread’s
process.

� Setting and handling of the itimer is not supported for pthreads that are executing on a
hardware thread not originally configured to a pthread’s process.

� Performance monitoring (BGPM) is not supported for pthreads that are executing on a
hardware thread not originally configured to a pthread’s process.

� The user's code cannot perform a setaffinity to the process leader's thread ID (that is,
main thread).

Controlling Application Phases
The application can use any of the following CNK supported interprocess synchronization
mechanisms to transition into and out of actively running pthreads that are executing on a
hardware thread that is not configured to a pthread’s process:

� Barriers using pthread_barrier with shared attribute set
� Conditions using pthread_cond with shared attribute set
� Mutexes using pthread_mutex with shared attribute set

The application can also use its own synchronization mechanisms as long as the blocked
threads are not waiting on the completion of a function shipping system call.

3.12 Thread priority

The software thread priority can be set within a pthread through either the pthread attribute
structure or through an explicit system call. The priority values that are supported depend on
the scheduling policy that is set for the pthread. Thread priorities are evaluated in the
scheduler when a condition occurs within a hardware thread that causes the scheduler to
Chapter 3. Processes 21

select a potentially different pthread for dispatching. Because the Blue Gene/Q system has
absolute hardware thread affinity, the relative pthread priorities of pthreads on different
hardware threads has little consequence. The relative thread priorities are important for
pthreads assigned to the same hardware thread.

There are conditions in which a communication thread might require control only when no
other application threads are running. Because of this requirement, communication threads
can specify a priority that is lower than any application thread. Conversely, there are
situations when a communication thread might need to be the highest priority software thread
on the hardware thread. Therefore, communication threads are allowed to set a priority value
that is more favored than any application thread priority. This widened range of priorities is
supported by the use of a special scheduling policy, SCHED_COMM. See 3.12.1, “Setting
priority through the pthread attribute” on page 22.

Thread priority can be modified dynamically, for example, a pthread might want to raise or
lower its priority before relinquishing control. A priority change results in a call to the kernel
within the target thread. At that time, the relative priorities of the software threads on the
hardware thread are re-evaluated. The most eligible software thread is dispatched.

3.12.1 Setting priority through the pthread attribute

Priority can be set through the pthread attribute structure supplied to pthread_create. The
following API must first be issued to have the priority information in the attribute used. The
following code sets the inherit attribute:

pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

Setting the priority within the pthread attribute can be done by either specifying just the
priority or by specifying both the policy and priority. To specify both the policy and priority, see
3.12, “Thread priority” on page 21. To specify just the priority, use the following API:

pthread_attr_setschedparam(pthread_attr_t *attr, struc sched_param *param)

If this API is used, the policy is inherited from the caller if the pthread_attr_setschedpolicy()
was not called, even though the PTHREAD_EXPLICIT_SCHED value is specified on the
pthread_attr_setinheritsched() API is specified.

To determine the priority range for a given scheduler policy, use the following APIs:

� sched_get_priority_max(int Policy)
� sched_get_priority_min(int Policy)

Table 3-3 outlines the priorities for the Blue Gene/Q system. However, these ranges are
subject to change. The application code must avoid making assumptions regarding the valid
priority range for a given policy and use the previously mentioned APIs.

Table 3-3 Blue Gene/Q priorities

Policy Minimum priority Maximum priority

SCHED_OTHER 2 98

SCHED_FIFO 2 98

SCHED_COMM 1 99
22 IBM System Blue Gene Solution: Blue Gene/Q Application Development

3.12.2 Explicit setting of priority

Priority can be set explicitly through the use of the pthread_setschedparam() API.
Example 3-2 on page 20 shows an example of explicitly setting affinity.

Example 3-3 Setting priorities explicitly

#include <sched.h>
int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param
*param);

3.12.3 Hardware thread priority

The hardware thread priority represents the relative proportion of available core cycles that
are to be given to hardware threads that share the same core. There are seven PowerPC
architected hardware thread priorities. However, the Blue Gene/Q system internally
implements two priority levels. Based on internal configuration settings, the mapping between
the architected and available priority levels are shown in Table 3-4.

Table 3-4 Priority level mapping

Setting hardware thread priority from an application
Applications can use the low and medium Blue Gene/Q hardware thread priorities. The
following statement brings in the required header file that contains the inline interfaces:

#include <hwi/include/bqc/A2inlines.h>

The interfaces control hardware thread priorities.

The following inlines can be used to set hardware thread priorities:

� void ThreadPriorityMedium();
� void ThreadPriorityMediumLow();
� void ThreadPriorityLow();

The ThreadPriority_Medium() and ThreadPriority_MediumLow() interfaces both map to the
medium Blue Gene/Q priority level. The ThreadPriority_Low() sets the low Blue Gene/Q
priority level.

The current priority of the hardware thread can be obtained by reading the PPR32 register.
Table 3-4 describes the mapping of the priority levels. The thread priority can also be set by
writing to this register. This approach can be useful when restoring a previously saved priority
after priority modification. Example 3-4 on page 24 demonstrates a sequence of saving,
modifying, and restoring the hardware priority of a thread.

PowerPC architected
priority level

PowerPC instruction PPR32::PRI Implemented Blue
Gene/Q priority level

low or 1, 1, 1 0b010 low

medium-low or 6, 6, 6 0b011 medium

medium or 2, 2, 2 0b100 medium

Important: These priority terms refer to the architected PowerPC priority level terminology,
not the Blue Gene/Q priority terminology.
Chapter 3. Processes 23

Example 3-4 Sequence of saving, modifying, and restoring the hardware priority of a thread

// Save current hardware priority
uint64_t ppc32 = mfspr(SPRN_PPR32);

// Force hardware priority to low
ThreadPriority_Low();

// perform some function ...

// restore priority
mtspr(SPRN_PPR32, ppc32);
24 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 4. Memory

This chapter provides an overview of the memory subsystem and explains how it relates to
the Compute Node Kernel (CNK). This chapter includes the following topics:

� Memory system overview
� Memory management
� Memory protection
� Shared memory
� Persistent memory
� Compute node ramdisk
� Support for the /proc file system
� L1P prefetcher
� L2 atomic operations
� Speculative execution
� Support for dynamic linking
� Transactional memory

4

© Copyright IBM Corp. 2013. All rights reserved. 25

4.1 Memory system overview

The Blue Gene/Q system contains a distributed memory system, which includes an on-chip
cache hierarchy and an off-chip main store. It contains optimized on-chip symmetric
multiprocessing (SMP) support for locking and communication between the 17 ASIC
processors. Each processor can have four threads.

The aggregate memory of the total system is distributed in the style of a multicomputer, with
no hardware sharing between nodes. Each node contains 16 GB of physical main memory.
This memory is non stacked synchronous dynamic random access memory (SDRAM).

The first-level (L1) caches are contained in the A2 core macro. The L1P cache is used as a
prefetch cache and write-back buffers for L1 data. The second-level (L2) cache is 32 MB.

Table 4-1 on page 27 lists the memory specifications for the Blue Gene/Q system.

4.1.1 L1 prefetch cache overview

The level 1 prefetch (L1p) cache is a module that provides the interface between an A2 core
and the rest of the Blue Gene/Q system. It interfaces to the Blue Gene/Q switch, the device
control register (DCR) device ring, a memory-mapped I/O space that is local to the core, and
a static random-access memory (SRAM) module that might be local to the core. The L1p
cache manages a 32 128 byte cache structure to identify and prefetch memory access
patterns. This functionality is critical for performance. The L1p cache also performs write
combining. It presents multiple small writes to the switch as a single write, while maintaining
data coherency.

The L1P cache has the following functions:

� Provides A2 interfaces to the Blue Gene/Q system:

– Request
– Store
– Reload
– Synchronize
– Reservation
– Invalidation

� DCR bridge visible as memory mapped I/O

� Prefetching:

– Stream prefetch engine with automatically detected and software-hinted streams
– List prefetch engine
– Optional symmetrical treatment of information and data prefetch

� Write combining support

� Synchronization support using generation protocol

� Pipelined switch interface:

– Out-of-order interface to distinct destinations
– In-order interface to a single destination

L1P instruction support for Blue Gene/Q compute chips
Table 4-1 on page 27 lists the memory specifications for the Blue Gene/Q system.
26 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table 4-1 Blue Gene/Q memory specifications

Prefetch algorithms
Two prefetch algorithms are supported, linear streams and list streams.

Linear Streams
Up to 16 concurrent linear streams of consecutive addresses can be simultaneously
prefetched. Linear streams can be automatically identified, or hinted, using data cache block
touch (dcbt) instructions, or established optimistically for any miss. Stream underflow (a hit on
a line that is being fetched from the switch) triggers a depth increase when adaptation is
enabled. Stream replacement and depth stealing lines are selected with a least recently hit
algorithm.

List Streams
With software cooperation, access patterns can be recorded and reused by a list fetch
engine. This implementation allows iterative application software to make efficient use of
completely general, but repetitive, access patterns. The recording of patterns of physical
memory access by hardware enables virtual memory issues to be ignored.

A2 interface
The L1p cache accepts commands and data from the A2 core at the pclk period. Received
commands are queued in a 32-deep lookup queue. This depth of 32 supports eight

Cache Quantitya

a. This value is the quantity on each Blue Gene/Q compute chip.

Size Latencyb

b. The latency value is determined relative to instruction dispatch.

Replacement
policy

Other
information

Clock
domain

L1 instruction
cache

18
(1 per
processor)

16 KB 3
processor
clocks
(pclk)

Pseudo least
recently used
(LRU)

4-way
set-associative
64-byte line size

Pclk

L1 data cache 18
(1 per
processor)

16 KB 6 pclk
(integer)

Pseudo LRU 8-way
set-associative
64-byte line size

Pclk

L1 prefetch
cache

18
(1 per
processor)

32 128 bytes 24 pclk Depth stealing
and round robin

128-byte line Pclk / 2

L2 cache 16 2 MB/slice
32 MB total
L2 cache
on-chip

82 pclk LRU 16-way
set-associative
16-way sliced
4 banks per slice
8 sub-banks per
slice
128-byte line

Pclk / 2

Double-data
rate (DDR)
memory

2 16 GB total 350 pclk 128-byte line Pclk (5 / 6)

Embedded
dynamic
random-
access
memory
(eDRAM)

1 256 KB 80 pclk Software control 16 bytes wide
8 eDRAM
macro-internal
bank

Pclk / 2
Chapter 4. Memory 27

outstanding data load requests, four instruction load requests, and 20 store requests. The A2
core supports a maximum of eight outstanding data load requests and four instruction load
requests. At reset, the A2 core is programmed to issue no more than 20 outstanding store
commands. The number 20 corresponds to the maximum of 16 requests that can be
accepted by the switch and an additional four active store commands, not committed to the
switch, which the L1p cache can maintain for write combining. The elements of this queue
include pointers to a request array that contains the address associated with that command.
For store operations, this queue also includes a pointer to the location in the 20-entry store
buffer that contains the store data.

4.1.2 L2 cache functional overview

The L2 cache units provide most of the memory system caching on the Blue Gene/Q
compute chip. There are 16 individual caches, or slices. Each cache is assigned to store a
unique subset of the physical memory lines. The physical memory addresses that are
assigned to each cache slice are static and configurable. The L2 line size is 128 bytes, which
is twice the width of an L1 line. L2 slices are set-associative and organized as 1024 sets.
Each set has 16-way association. The L2 data store comprises embedded DRAM, and the
tag store comprises SRAM. The main memory is accessed through two on-chip DDR
controllers. Each controller manages eight L2 slices. The primary logic of the L2 caches
operates at half the processor clock frequency. Some interface logic operates at lower
frequencies. Each L2 slice has a single read data port that is 256 bits wide, a single write data
port that is 256 bits wide, and a single request port. This port is shared by all processors
through the crossbar switch.

The L2 caches primarily operate as normal, set-associative caches. They also support
speculative threads and atomic memory transactions.

The L2 caches serve as the point of coherence for all processors. Therefore, they generate
L1 invalidations when required. Because the L2 caches are inclusive of the L1 caches, they
can remember which processors might have a valid copy of every line. They can multicast
invalidations to only those processors. The L2 caches are also a synchronization point, so
they coordinate synchronization (msync), load and reserve (lwarx), and store conditional
(stwcx) instructions.

4.1.3 Boot eDRAM overview

The Blue Gene/Q system uses a boot eDRAM macro. The eDRAM macro has the following
properties:

� 256 KB capacity
� 16-byte-wide access
� 1.25 ns cycle time, 5 ns latency
� 4-way banked, fully pipelined for high throughput

The module is directly operational after reset and provides the boot code. It is also used as a
background communication path to the host system. The boot eDRAM macro is connected to
the A2 cores with the device bus, which is directly connected to the cores with the crossbar
switch. Joint Test Action Group (JTAG) access is managed by the JTAG controller, which is
also connected to the device bus.
28 IBM System Blue Gene Solution: Blue Gene/Q Application Development

4.2 Memory management

For optimal performance, manage memory carefully on the Blue Gene/Q system. The
memory subsystem of Blue Gene/Q nodes has specific characteristics and limitations.
Although a Blue Gene/Q node has 16 GB of memory, physical memory size constraints must
still be considered when writing, running, and debugging applications.

The CNK does not dynamically grow its memory usage over time. The CNK consumes a fixed
size of 16 MB out of the 16 GB of memory. Therefore, additional threads, mmaps, system
calls, buffers, and so on, do not change internal kernel memory usage. The remainder of the
memory (16,368 MB on a 16 GB node) is partitioned for the application.

When the application is started, the CNK examines the following information:

� Virtual addresses, sizes, and permissions for all application sections

� Size of memory to parcel

� Requested size of the shared memory segment

� Persistent memory size and its present physical address

� The number of processes to create

� Whether an interpreter is required (an interpreter is commonly required by dynamically
linked executable programs)

The CNK partitions memory to form a static memory map. This static memory map is a
translation between virtual addresses (as seen by the application) into physical addresses in
the DDR3 memory. This partitioning process is designed to generate a valid mapping that
maximizes memory use.

4.3 Memory protection

The CNK has several mechanisms that provide protection against incorrect memory
accesses:

� All storage used by the kernel is inaccessible to user applications.

� The text segment of a statically linked application is write protected.

� The text segment of a dynamically linked application is write protected.

� The nonshared address space of processes on the node is not directly accessible by other
processes on the node.

� Guard pages can be activated if the compiler does not insert speculative dcbt instructions.

4.4 Shared memory

The CNK supports shared memory between all the processes on a given node. The size of
shared memory must be specified to the runjob command with an environment variable.
Shared memory is supported in all process counts. However, shared memory with one
process per node is not necessary because each processor already has access to all of the
node memory.

Shared memory is allocated with the standard Linux shm_open() and mmap() methods. The
CNK does not have dynamic virtual pages. Therefore, the physical memory that backs the
Chapter 4. Memory 29

shared memory must come out of a memory region that is dedicated for shared memory. The
size of this memory region is set when a job is started.

The BG_SHAREDMEMSIZE environment variable specifies the amount of memory to be
allocated in MB. Use the runjob --envs flag. For example, BG_SHAREDMEMSIZE = 32 allocates
32 MB of shared memory storage. For more information about environment variables, see
“Compute Node Kernel environment variables” on page 142.

The amount of memory to be set aside for this memory region can be changed at job launch.

Example 4-1 illustrates shared-memory allocation.

Example 4-1 Shared memory allocation

fd = shm_open(SHM_FILE, O_RDWR, 0600);
ftruncate(fd, MAX_SHARED_SIZE);
shmptr1 = mmap(NULL, MAX_SHARED_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

Example 4-2 illustrates shared-memory deallocation.

Example 4-2 Shared memory deallocation

munmap(shmptrl, MAX_SHARED_SIZE);
close(fd)
shm_unlink(SHM_FILE);

The shm_open() and shm_unlink() routines access a pseudo-device, /dev/shm/filename,
which the kernel interprets. Because multiple processes can access or close the
shared-memory file, allocation and deallocation are tracked by a simple reference count.
Therefore, the processes are not required to coordinate deallocation of the shared memory
region.

The value of BG_SHAREDMEMSIZE can be queried by the application using the
Kernel_GetMemorySize(KERNEL_MEMSIZE_SHARED, &shared_size) SPI call.

4.5 Persistent memory

Persistent memory is process memory that retains its contents from job to job. To allocate
persistent memory, the environment variable BG_PERSISTMEMSIZE = X must be specified.
“X” represents the number of megabytes to be allocated for use as persistent memory. For the
persistent memory to be maintained across jobs, all job submissions must specify the same
value for the BG_PERSISTMEMSIZE variable. The contents of persistent memory can be
reinitialized during job startup either by changing the value of BG_PERSISTMEMSIZE or by
specifying the environment variable BG_PERSISTMEMRESET = 1. The persist_open()
kernel function supports persistent memory.

4.6 Compute node ramdisk

The CNK provides a random-access file system that is resident in compute node memory.
This file system is local to the compute node. File system operations to the ramdisk do not
result in I/O activity to the I/O node or other compute nodes.
30 IBM System Blue Gene Solution: Blue Gene/Q Application Development

There are three mount points for the compute ramdisk. Table 4-2 on page 31 shows the
mount points.

Table 4-2 Mount points for the compute node ramdisk

The CNK supports a range of system calls for the ramdisk, including the following calls: read,
write, open, close, lseek, utime, rename, dup, dup2, mmap, munmap, truncate, ftruncate, stat,
lstat, fstat, fsync, llseek, readv, writev, truncate64, ftruncate64, stat64, lstat64, and fstat64.

This support has the following limitations:

� File access permissions and ownership are not tracked or honored. The chmod and chown
functions do not have an effect. However, the access() system call can be used to
determine file existence.

� File directories are not modeled. So, the mkdir() and rmdir() system calls have no effect.
Instead, the open() system call honors separate file namespaces that are specified with
directory prefixes. (That is, the slash '/' character is treated as part of the file name, not as
a separator of the directory hierarchy.)

� The flock() system call handles only the LOCK_EX and LOCK_UN opcodes.

� Advisory file access hints using the posix_fadvisory() calls are ignored.

� The unlink() system call cannot reclaim space for unlinked, memory-mapped files in the
CN RAM disk.

4.7 Support for the /proc file system

The CNK creates several files that can be used to obtain process-specific data. These files
are in the /proc/<pid> directory. Table 4-3 lists the files.

Table 4-3 Files in the /proc/<pid> directory

Name Mount point Size Scope

Shared memory /dev/shm/ Size is determined by the
BG_SHAREDMEMSIZE environment
variable.

MPICH and PAMI use some of this
shared memory.

Node-wide, cleared when job exits.

Persistent
memory

/dev/persist/ Size is determined by the
BG_PERSISTMEMSIZE environment
variable.

Node-wide, cleared only when
BG_PERSISTMEMSIZE is specified
differently or if
BG_PERSISTMEMRESET is set.

Local memory /dev/local Size is determined by the
Kernel_SetLocalFSWindow() SPI call.

Process-wide, cleared when job exits.

File Description

/proc/<pid>/exe A symbolic link to the executable.

/proc/<pid>/cwd A symbolic link to the current working directory.
Chapter 4. Memory 31

The <pid> is the value that is returned by the getpid() function. For example, if the getpid()
function returns 17, the file name is "/proc/17/maps". Alternatively, the
/proc/self/<filename> syntax can be used.

Regular files can be accessed through the Blue Gene/Q Code Development and Tools
Interface (CDTI) Get File Names, Get File Stat Data, and Get File Contents commands. For
more information, see the IBM System Blue Gene Solution: Blue Gene/Q Code Development
and Tools Interface, REDP-4659 Redpapers publication.

4.8 L1P prefetcher

The Blue Gene/Q hardware has two prefetch engines that can be manipulated by the user to
control cache prefetch behaviors.

The L1 prefetcher (L1p) is a module in the Blue Gene/Q compute chip that is interposed
between the A2 bus and the rest of the Blue Gene/Q chip. There are 17 copies of the L1p.
Each copy is attached to one of the 17 Blue Gene/Q A2 cores. Figure 4-1 shows the L1p
module.

Figure 4-1 L1p module

The L1p performs the performance-critical tasks of identifying and prefetching memory
access patterns and managing a 32 x 128-byte cache structure for prefetch data. The
prefetcher is designed to predict which pieces of data will be required by the processor. The
L1 prefetcher in the Blue Gene/Q system provides two prefetch algorithms: a linear stream
prefetcher and a perfect prefetcher.

/proc/<pid>/maps A regular file that represents the memory map for the process. The memory
map includes text, data, heap, stack, and dynamic library address ranges for
the process.

/proc/<pid>/cmdline A regular file that contains the command line passed into the process.

/proc/<pid>/environ A regular file that contains the environment variables for the process at job
start.

File Description

L2 L2 L2 L2 L2 L2 L2 L2

DDR3 Controller 1

A2
0

L1P

A2
1

L1P

A2
2

L1P

A2
3

L1P

A2
4

L1P

A2
5

L1P

A2
16

L1P

Crossbar Switch

L2 L2 L2 L2 L2 L2 L2 L2

DDR3 Controller 0

...

DDR Chips DDR Chips
32 IBM System Blue Gene Solution: Blue Gene/Q Application Development

4.8.1 Linear stream prefetcher overview

The linear stream prefetcher that is used in the Blue Gene/Q system detects positive
sequential memory access strides and prefetches ahead of the stream when possible. It can
track up to 16 streams of memory accesses. Each stream is sequential and a stride of one L1
cache line (64 bytes).

Figure 4-2 on page 33 describes two streams of data that are required by the processor. The
streams are at different addresses, but the linear stream prefetcher can track them
independently. The goal is that when the processor needs address 0x100080 or 0x175080,
the L1p has prefetched that data into its prefetch cache, reducing memory access latency.

Figure 4-2 Linear stream prefetcher

The linear stream prefetcher is the default prefetch algorithm and is always active.

Establishing a stream
The L1p only prefetches from established streams. The stream detection logic has several
different modes that are settable by the application to control how streams are established.

Optimistic mode Assumes that all L1 misses will become streams. In this
mode, the L1p immediately starts prefetching from the
next cache line in the stream.

Confirmed mode The linear stream prefetcher will wait for at least one
additional L1 miss that corresponds to the stream to be
detected. After confirmation, the L1p starts prefetching
from the stream.

Confirmed or cache touch mode The prefetcher behaves like confirmed mode.
Additionally, a stream will be established if an explicit
dcbt (data cache block touch) instruction that results in
an L1 cache miss is executed.

Adaptive prefetching
When a stream is established, it is internally assigned a stream number. This stream number
is used to track the depth of the prefetch for that stream. It is possible that some streams
advance quicker than other streams. Therefore, certain streams should prefetch further
ahead than other streams.

With adaptive prefetching, when the L1p detects that an established stream encounters an
L1p miss that is not already in the prefetch cache, it automatically increases that stream
number's prefetch depth by one L1p 128-byte cache line (up to the adaptive prefetch depth
limit). The maximum and initial prefetch depths for adaptive streams are configurable between

0x100000 Demand
0x100080 Prefetch
0x100100 Prefetch

0x175000 Demand
0x175080 Prefetch→ Demand
0x1750100 Prefetch
0x1750180 Prefetch

A2 L1

L1 Prefetch Cache

S
tre

am
S

tre
am
Chapter 4. Memory 33

1 and 8. The rate of adaptation might be configurably throttled to performance tune the
adaptive prefetch.

Thread synchronization
Each core in a Blue Gene/Q system has a single dedicated linear stream prefetcher.
However, all four hardware threads share the same linear stream prefetcher. This sharing can
cause an atomicity and ordering problem if multiple threads modify the linear stream
prefetcher’s configuration registers. The L1p and the SPI do not restrict or block access to the
configuration registers. If the application developer is potentially modifying the configuration
registers from multiple hardware threads, locking must be added or there might be some
non-deterministic choices in the L1p configuration.

The following strategies can be used for locking:

pthread_mutexes Standard POSIX locking primitives. These primitives are simple and work
well in threaded processes.

larx/stcx PowerPC load reservation locking mechanism. This mechanism can be
used to create a lighter-weight lock than pthread_mutex. The larx/stcx
instructions can also be used for multiple processes that have a shared
memory region.

L2 atomics Using the Blue Gene/Q L2 atomic operations to "take a ticket" with load
and increment. The thread blocks until the "now serving" counter
matches the ticket. The thread then updates the configuration register
and performs a store and add operation to add 1 to the "now serving"
counter.

L2 transactional memory regions cannot be used for atomically setting L1p configuration
registers because the L2 does not version the L1p MMIO memory region.

4.8.2 Perfect prefetcher overview

The perfect prefetcher in the Blue Gene/Q system uses a recorded pattern of memory
accesses to effectively prefetch data into the caches. Unlike the linear stream prefetcher, the
perfect prefetch algorithm requires that the application train the perfect prefetcher with
specific patterns of memory accesses. When the application executes the same section of
code again, the application must inform the L1p hardware that the previously recorded
pattern will be reoccurring. As the hardware thread is executing this section of code, the L1p
hardware is tracking the progress of the pattern and attempting to prefetch ahead of the
anticipated data. Since the recorded pattern and the next pattern through a section of code
might not be precisely the same, the L1p has some tolerance for pattern deviations.

There are four perfect prefetchers per L1p. Each perfect prefetcher is assigned to a separate
hardware thread in the associated A2 core. This allows each hardware thread to be creating
and executing a separate list of prefetches with no requirement for software coordination.

The headers and documentation for the L1p system programming interface (SPI) are
provided in the spi/include/l1p directory.

Training the perfect prefetcher
To train the perfect prefetcher, the application configures the L1p with the
L1P_PatternConfigure(size) L1p SPI call. The size parameter contains the maximum number
of L1 misses that are expected through the code sequence. This is used for calculating the
memory buffer space that is needed to hold the patterns. There is no enforced limit (outside of
the size of available memory) for the maximum size of the pattern. If the buffer space is
34 IBM System Blue Gene Solution: Blue Gene/Q Application Development

exceeded by the pattern, pattern recording is halted and the "Maximum" bit in the
L1P_Status_t structure indicates this overflow condition.

Next, the application calls L1P_PatternStart() with the record flag set and then executes a
section of code. Meanwhile, the L1p hardware is recording each L1 cache miss in the
application-provided storage. When the application has completed the code section, it tells
the L1p to stop recording by means of another L1p SPI call, L1P_PatternStop().

This prefetch algorithm works when there is a consistent L1 cache miss pattern. For
applications that momentarily deviate from consistency, the L1p can disable or pause the
prefetcher (both training and prefetching). This process prevents the prefetcher from
recording L1 cache misses that are not likely to repeat during the next execution of the
recorded code.

Using a trained pattern
When a list of L1 cache misses has been trained, the application calls the L1P_PatternStop()
function. This stops training and sets up the trained pattern to be used for prefetching on the
next iteration.

To start prefetching with this new pattern, the application then issues a L1P_PatternStart()
call. This call tells the hardware thread's L1 perfect prefetcher to start loading the list into its
cache. It then monitors the loaded section of the list, and tracks the L1 cache misses with the
list.

In this call to the L1P_PatternStart() function, the record flag can optionally be set. When set
(in self-healing mode), the L1p creates a new revision of the list in a separate physical
memory location for later use. The L1P_PatternStart() function then implicitly toggles
between the two lists (current and next list) by swapping the physical addresses for the L1p
perfect prefetcher's read/write base addresses.

To synchronize the prefetching of the data pattern with the A2 execution, the perfect
prefetcher must track where the application is executing with respect to the prefetch list. Since
the application is not required to be perfectly reproducible with regards to L1 cache misses,
some tolerance is provided for the appearance of L1 miss addresses that are not present in
the prerecorded pattern and for addresses that are recorded in the pattern which are missing
from the actual stream of L1 cache misses. Figure 4-3 shows an L1p cache miss.

Figure 4-3 L1p cache miss

a
b
x
c
d
e
f
g
h
i
k

a
b
c
d
y
z
e
f
g
h
i

L1
 M

iss

Add
res

s Lis
t

Add
res

s

P
re

fe
tc

he
d

A
dd

re
ss

es
Chapter 4. Memory 35

In Figure 4-3, the address at location 'x' was not forecast in the list. However, the next L1 miss
at location 'c' was expected. The perfect prefetcher ignores the rogue address 'x' and
continues matching at location 'c'. Similarly, locations 'y' and 'z' were in the list, but were not
presented to the L1p as L1 cache misses. Again, the L1p was able to look ahead in the
pattern and adjust its list address offset to correspond to location 'e'.

Since the L1p cannot have a multi-megabyte metadata cache containing the full list, it fetches
as many as 24 entries of the list to identify data to be prefetched and to synchronize with the
stream of L1 misses. The pattern prefetching hardware is able to compare the current L1 miss
address with the next, not-yet-matched list entry and up to 7 subsequent addresses in the
prerecorded pattern. If an L1 miss is not present in this group of up to 8 pattern addresses
available for comparison, the perfect prefetcher drops that L1 miss address but tracks the
number of such consecutive non-list misses. If the number of consecutive misses exceeds a
predefined miss threshold, the perfect prefetcher abandons the list and halts prefetching. This
behavior is achieved by providing a 24-location buffer inside each perfect prefetcher into
which the prerecorded pattern of addresses is automatically loaded from memory. These 24
locations are divided into two groups. The first group contains the first 8 addresses in the
pattern presently being prefetched and is instrumented to permit the 8 comparisons. The
remaining 16 locations are in standard SRAM and provide a buffering function, increasing the
likelihood that the prerecorded addresses are available in the perfect prefetcher when
needed.

Thus, there are two scenarios that can lead to list abandonment:

� The thread started executing code with memory access patterns that contain a sequence
of addresses that is unrelated to the recorded memory patterns of length greater than the
preset threshold. The preset threshold can be set with the
L1P_PatternSetAbandonThreshold() function.

� The thread's memory access pattern jumped ahead in the list by more than 8 entries (and
therefore the L1p lost synchronization).

The perfect prefetcher status bits, returned by the L1P_PatternStatus() function, can be used
to determine if the prefetch abandoned or completed the list.

A recorded pattern can be used at any time, but only 1 prefetch list can be active per
hardware thread at any time.

Saving and restoring patterns
The L1p perfect prefetcher SPI only manages one pattern at a time. However, for greater
flexibility, the L1P_GetPattern() function can be used to retrieve the active pattern from the
SPI. This allows pattern storage allocated by the L1P_PatternConfigure() function to be
detached and set aside for later usage without destroying the pattern or requiring
regeneration of the pattern.

Later on, the application developer can restore the old pattern using the L1P_SetPattern()
function. This is more efficient because it does not require a reallocation and regeneration of
the pattern. After restoring the pattern, the application calls the L1P_PatternStart() function to
begin executing the pattern.

The number of patterns that can be retained by the application is limited only by the amount
of memory available to hold patterns.

When a pattern has been retrieved using the L1P_GetPattern() function, the application must
manage the storage for the pattern. When the pattern is no longer needed, the application
should call the L1P_DeallocatePattern() function to release the storage.
36 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Interaction with the linear stream prefetcher
Each L1p comprises a single copy of the linear stream prefetcher and four copies of the
perfect prefetcher. Although the algorithms are separate, they share a significant amount of
the internal L1p arrays.

The prefetch data array contains all of the demand-loaded and prefetched data, regardless of
which prefetch algorithm fetched the data. Therefore, this array is shared between all five
prefetchers (one linear stream + four perfect prefetchers). The L1P_SetStreamTotalDepth()
routine can be used to limit the linear stream prefetcher's total depth. This reserves a section
of the prefetch data array specifically for the perfect prefetcher.

Nested patterns
If a segment of code that is using the perfect prefetcher starts executing a subroutine or
library that is not well understood, the application programmer must consider the following
scenarios:

1. If the target subroutine has a fairly predictable access pattern and contains no perfect
prefetcher use, the subroutine call can also contribute to the pattern that is being recorded
by the calling routine. No surrounding perfect prefetcher directives are required.

2. If the subroutine has some random access or data-dependent elements, it might be
helpful for the application programmer to issue an L1p_PatternPause() command before
the subroutine call and an L1p_PatternResume() command when that subroutine returns.
Pausing the prefetcher might reduce the chance of pattern abandonment. When the
subroutine is understood, reevaluate the usage of pause.

3. If the subroutine or library also uses the perfect prefetcher and makes its own
L1P_Configure() calls, there are controls over the behavior of the L1p SPI when there are
nested L1P_Configure() calls.

If a L1P_Configure() call occurs while a perfect prefetcher is active, the default action is to
perform a context switch of the calling hardware thread's L1p perfect prefetcher hardware
state. The addresses from which the pattern is being read and to which the new pattern is
being written are stored to memory with the content of the prefetcher's configuration
registers. When the matched L1P_Unconfigure() function is executed, the perfect
prefetcher context is restored and its normal prefetching continues. The pattern that is
produced during such a sequence can be successfully used to prefetch data during a later
execution of the same code. Any number of such context switches can be nested,
supporting a normal, modular programming environment. From a performance
perspective, these context switches might require a system call, which might reduce
performance.

If this default L1P_Configure() function behavior is not preferred, the application
programmer can call the L1P_PatternSetNestingMode() function. This routine allows the
application to manage the L1P SPI behavior when a nested routine is being called. There
are four modes:

– Save/Restore context is always performed when encountering
L1P_Configure/Unconfigure() function calls. This is the default mode.

– Nested L1P_Configure() routines disable the ability to change the active pattern (that
is, the current pattern stays active).

– Nested L1P_Configure() and L1P_SetPattern() routines are disabled. However, other
L1P SPI routines that do not switch the active pattern continue to function.

– Any nested L1P_Configure() routines can result in a fatal error. This can be used for
debugging.
Chapter 4. Memory 37

Performance counter support
The perfect prefetcher makes full use of the performance counters in the Blue Gene/Q chip.
Thus, software can monitor the number of:

� Pattern write overflows
� Times the pattern was abandoned
� Pattern starts
� Times the core was stalled waiting for the pattern to be read
� Times the core was stalled waiting for the pattern to be written
� Times the core address does not match any pattern address
� Times an address in the pattern is skipped over
� Times the pattern comparison catches up with the pattern prefetching
� Comparisons with the pattern

These performance counters can be obtained through the Blue Gene/Q performance counter
library and related tools.

4.8.3 L1P prefetcher API descriptions

This section describes the L1P prefetcher API. It contains the following information:

� Defines and enumerations
� Data types
� L1P perfect prefetcher configuration functions
� L1p perfect prefetcher control functions
� Explicit pattern management functions
� L1P linear stream prefetcher control functions
� L1p error conditions

Defines and enumerations
Table 4-4 describes the L1P_StreamPolicy_t enumeration.

Table 4-4 enum L1P_StreamPolicy_t

Table 4-5 describes the L1P_PatternNest_t enumeration.

Table 4-5 enum L1P_PatternNest_t

Name Description

L1P_stream_optimistic Any L1 cache miss memory reference
(optimistically) establishes a stream.

L1P_stream_confirmed The L1p waits for confirmation before
establishing the stream.

L1P_stream_confirmed_or_dcbt Any L1 cache miss memory reference using a
dcbt (data cache block touch) instruction
automatically creates an established stream.
Otherwise, the L1p waits for confirmation before
establishing the stream.

Name Description

L1P_NestingSaveContext (default) Any nested L1P_Configure() routines result in an
implicit context save. The matched
L1P_Unconfigure() routine restores the L1P
context.
38 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table 4-6 describes the L1P_PatternLimitPolicy_t enumeration.

Table 4-6 enum L1P_PatternLimitPolicy_t

The value for L1P_CACHELINESIZE is 128.

Data types
Table 4-7 describes the L1P_Pattern_t struct.

Table 4-7 Struct L1P_Pattern_t

Table 4-8 on page 40 describes the L1P_Status_t struct.

L1P_NestingIgnore The L1P pattern routines are disabled for the
thread after a nested L1P_Configure() routine is
performed. The pattern routines are re-enabled
when the matching L1P_Unconfigure() routine is
performed.

L1P_NestingFlat When the application makes a nested
L1P_Configure() call, it is reference counted and
ignored. Any L1P_SetPattern() calls are ignored
if they occur in a nested context.

L1P_NestingError Nested L1P_Configure() routines cause an error
message and assert a failure. This causes the
termination of the application.

Name Description

L1P_PatternLimit_Disable The limit on the number of allocated patterns is
disabled (that is, no limit)

L1P_PatternLimit_Error Exceeding the limit on the number of allocated
patterns causes the pattern allocation to fail with
L1P_NOMEMORY.

L1P_PatternLimit_Assert Exceeding the limit on number of allocated
patterns causes an assertion failure and the
process abnormally terminate.

L1P_PatternLimit_Prune Exceeding the limit on number of allocated
patterns causes pattern allocations to be treated
as though the nesting mode is
L1P_NestingIgnore.

Name Type Width Description

Size Size_t 8 bytes Size (in bytes) of the memory region that is
allocated by the L1P_Allocate() routine.

ReadPattern Void* 8 bytes Virtual memory address for the read pattern

WritePattern void* 8 bytes Virtual memory address for the write/generated
pattern

Name Description
Chapter 4. Memory 39

Table 4-8 struct L1P_Status_t

L1P perfect prefetcher configuration functions
Table 4-9 describes the L1P_PatternConfigure function.

Table 4-9 int L1P_PatternConfigure(uint64_t n)

Name Type Width Description

Finished uint64_ 1 bit Boolean that indicates that the perfect prefetcher
has completed the list. This bit is cleared when a
list has started executing, and set when the list
has completed.

Abandoned 1 bit Set if a failure to match causes list comparison to
be abandoned.

Maximum 1 bit Set if the length of the update reaches the
maximum.

Name Description

Parameter uint64_t n Input The maximum number
of L1 misses that can
be tracked by the list.

Return Codes L1P_NOMEMORY The application was unable to allocate enough
memory.

L1P_
ALREADYCONFIGURED

The L1p perfect prefetcher was already
configured.

Latency The implementation might require system calls.
On the CNK, this routine might use the glibc malloc() function internally. The
malloc() function can then perform brk() or mmap() system calls to allocate
storage.

Description:
Allocates enough storage so that the perfect prefetcher can track up to <n> L1 misses.
Storage is retained until the following actions occur:

� L1P_Unconfigure() is performed.

� L1P_SetPattern() is performed.

If the L1P_Configure() command is nested:

� If nesting mode has been set to L1P_NestingSaveContext, the L1P SPI pushes a L1P
context structure onto a stack of L1P context structures. When an L1P_Unconfigure()
function is called, this L1P context structure is restored. This is the default mode.

� If nesting mode has been set to L1P_NestingIgnore, the L1P SPI will reference count
the L1P_Configures. When nested, the SPI does not write new pattern addresses into
the L1p hardware. When the same number of L1P_Unconfigure() routines have been
called, the L1P SPI returns to normal function.

� If the nesting node has been set to L1P_NestingFlat, then the L1P SPI will reference
count and ignore nested L1P_Configures calls. All L1P_SetPattern() calls are ignored if
they occur in a nested context.

� If nesting mode has been set to L1P_NestingError, the L1P SPI will display an error
message and assert. This terminates the active process with a core file. This mode is
to be used for debug purposes.

Example
40 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table 4-10 describes the int L1P_PatternUnconfigure() function.

Table 4-10 int L1P_PatternUnconfigure()

L1p perfect prefetcher control functions
This section describes the L1p perfect prefetcher control functions.

Table 4-11 describes the L1P_PatternStart(int record) function.

Table 4-11 int L1P_PatternStart(int record)

Nested L1P_Configure: Unnested L1P_Configure

L1P_Configure(1000);
// …code…
L1P_Configure(1500);
// …code…
L1P_Unconfigure();
// …code…
L1P_Unconfigure();

L1P_Configure(1000);
// …code…
L1P_Unconfigure();
L1P_Configure(1500);
// …code…
L1P_Unconfigure();

Name Description

Parameters None

Return codes L1P_NOTCONFIGURED The L1p has not been
configured.

Latency Implementation might require system calls.
On CNK, this routine might use the glibc free() routine internally.
The free() call can then perform brk() or munmap() system calls to
free storage.

Description:
Deallocates storage used by the L1p SPI.
If one is available, the L1P SPI will pop a L1P context structure from the stack of L1P context
structures. The context will then be used to restore the previous L1P pattern status and pointers.

Name Description

Parameters int record Input Boolean that indicates whether
L1P_PatternStart generates a
new pattern. If set to TRUE, a new
pattern is generated. Generation
of a new pattern might occur
simultaneously with the execution
of an old pattern.

Return Codes: L1P_PATTERNACTIVE L1P_PatternStart() called while a pattern was
active.

L1P_NOTCONFIGURE
D

The L1p has not been configured.

Latency Inlineable function call that accesses user-space memory mapped registers.

Name Description
Chapter 4. Memory 41

Table 4-12 describes the L1P_PatternPause() function.

Table 4-12 int L1P_PatternPause()

Table 4-13 describes the L1P_PatternResume() function.

Table 4-13 int L1P_PatternResume()

Table 4-14 describes the L1P_PatternStop() function.

Table 4-14 int L1P_PatternStop()

Description:
The perfect prefetcher will start monitoring L1 misses and performing prefetch requests based on
those misses. The 'record' parameter instructs the PatternStart to record the pattern of L1 misses for
the next iteration.
This L1P_PatternStart() should be called at the beginning of every entrance into the section of code
that has been recorded.

Name Description

Parameters None

Return codes L1P_NOTCONFIGURED The L1p prefetcher has not
been configured.

Latency Inlineable function call that accesses user-space memory mapped
registers.

Description:
Suspends the active perfect prefetcher. The Linear Stream Prefetcher and the other three perfect
prefetchers on the core continue to execute.
This routine can be used in conjunction with L1P_PatternResume() function to avoid recording
out-of-bound memory fetches, such as instructions performing a periodic printf. It can also be used to
avoid sections of code that perform memory accesses that are inconsistent between iterations.

Name Description

Parameters None

Return codes L1P_NOTCONFIGURED The L1p has not been
configured.

Latency Inlineable function call that accesses user-space memory mapped
registers

Description:
Resumes the perfect prefetcher from the last pattern offset location.
This routine can be used in conjunction with L1P_PatternPause() to avoid recording memory fetches
that are not likely to repeat, such as instructions performing a periodic printf. It can also be used to
avoid sections of code that perform memory accesses that are inconsistent between iterations.

Name Description

Parameters None

Return codes L1P_NOTCONFIGURED The L1p has not been
configured.

Name Description
42 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table 4-15 describes the L1P_PatternStatus function.

Table 4-15 int L1P_PatternStatus(L1P_State_t* status)

Table 4-16 describes the L1P_PatternStatus function.

Table 4-16 int L1P_PatternStatus(L1P_State_t* status)

Table 4-17 describes the L1P_PatternGetCurrentDepth function.

Table 4-17 int L1P_PatternGetCurrentDepth(uint64_t* fetch _depth, uint64_t* generate _depth)

Latency Inlineable function call that accesses user-space memory mapped
registers

Description:
Stops the perfect prefetcher and resets the list offsets to zero.

Name Description

Parameters L1P_Status_t status Output Perfect prefetcher
status bits

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Stops the perfect prefetcher and resets the list offsets to zero.

Name Description

Parameters L1P_Status_t status Output Perfect prefetcher
status bits

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns the current status for the L1 perfect prefetcher.

Name Description

Parameters uint64_t* fetch_depth Output Current depth of L1
misses in the
prefetching pattern.

uint64_t*
generate_depth

Output Current depth of L1
misses in the
generated pattern.

Return codes None defined

Latency Inlineable function call that accesses a read-only user-space memory
mapped registers

Name Description
Chapter 4. Memory 43

Table 4-18 describes the L1P_PatternGetNestingMode function.

Table 4-18 int L1P_PatternGetNestingMode (L1P_PatternNest_t* mode)

Table 4-19 describes the L1P_PatternSetNestingMode function.

Table 4-19 int L1P_PatternSetNestingMode(L1P_PatternNest_t mode)

Table 4-20 on page 45 describes the L1P_PatternSetAbandonThreshold function.

Description:
Returns the current pattern depths for the L1 perfect prefetcher. The pattern depth is the current index
into the pattern that the L1p is executing.
The fetch_depth parameter is used to determine how far in the current pattern/sequence the L1p has
progressed.
The generate depth parameter can be used to optimize the pattern length parameter to
L1P_PatternConfigure() to reduce the memory footprint of the L1p pattern.

Name Description

Parameters L1P_PatternNest_t
mode

Output Old Nesting

Return Codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns the current nesting mode for the L1 perfect prefetcher.
The supported nesting modes are L1P_NestingSaveContext, L1P_NestingIgnore, L1P_NestingFlat,
L1P_NestingError. A description of each of these modes is in “Defines and enumerations” on page 38.

Name Description

Parameters L1P_PatternNest_t
mode

Input New nesting mode

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns the current status for the L1 perfect prefetcher.
The default mode is L1P_NestingSaveContext. Other nesting modes are L1P_NestingIgnore,
L1P_NestingFlat, L1P_NestingError. A description of each of these modes is in “Defines and
enumerations” on page 38.

Name Description
44 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table 4-20 int L1P_PatternSetAbandonThreshold(uint64_t numL1misses)

Table 4-21 describes the L1P_PatternSetAbandonThreshold function.

Table 4-21 int L1P_PatternSetAbandonThreshold(uint64_t numL1misses)

Table 4-22 describes the L1P_PatternGetAbandonThreshold function.

Table 4-22 int L1P_PatternGetAbandonThreshold(uint64_t* numL1misses)

Name Description

Parameters Uint64_t
numL1misses

Input The number of
consecutive,
non-matching L1
misses that will result
in a pattern being
abandoned.
The valid range is 1 to
63.
Default = 63

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Sets the number of consecutive L1 misses that did not match the current location in the pattern. After
this number has been exceeded, the prefetching activity will cease and the pattern will be marked as
"Abandoned" in the L1P_Status_t structure returned by the L1P_PatternStatus() function.

Name Description

Parameters Uint64_t
numL1misses

Input The number of
consecutive,
non-matching L1
misses that will result
in a pattern being
abandoned.
The valid range is 1 to
63.
Default = 63

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Sets the number of consecutive L1 misses that did not match the current location in the pattern. After
this number has been exceeded, the prefetching activity will cease and the pattern will be marked as
"Abandoned" in the L1P_Status_t structure returned by the L1P_PatternStatus() function.

Name Description

Parameters Uint64_t*
numL1misses

Output The number of
consecutive,
non-matching L1
misses that will result
in a pattern being
abandoned.

Return codes None defined
Chapter 4. Memory 45

Table 4-23 describes the L1P_PatternSetEnable function.

Table 4-23 int L1P_PatternSetEnable(int enable)

Table 4-24 describes the L1P_PatternGetEnable function.

Table 4-24 int L1P_PatternGetEnable(int* enable)

Explicit pattern management functions
This section describes explicit pattern management functions.

Table 4-25 describes the L1P_AllocatePattern function.

Table 4-25 int L1P_AllocatePattern(uint64_t n, L1P_Pattern_t** ptr)

Latency Inlineable function call that accesses user-space memory mapped registers

Returns the number of consecutive L1 misses that did not match the current location in the pattern.
After this number has been exceeded, the prefetching activity will cease and the pattern will be marked
as "Abandoned" in the L1P_Status_t structure returned by the L1P_PatternStatus() function.

Name Description

Parameters int enable Input L1p pattern prefetcher
enable flag

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Sets a software enable/disable for L1p perfect prefetcher. This can be used to ascertain whether the
usage of the prefetcher is improving performance.

Name Description

Parameters int enable Output L1p pattern prefetcher
enable flag

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns the software enable/disable for L1p perfect prefetcher.

Name Description

Parameters uint64_t n Input The maximum number
of L1 misses that can
be tracked by the list.

L1P_Pattern_t** ptr Output Pointer to an existing
memory access
pattern.

Return codes L1P_NOMEMORY Application was unable to allocate enough
memory

Name Description
46 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table 4-26 describes the L1P_SetPattern function.

Table 4-26 int L1P_SetPattern(L1P_Pattern_t* pattern)

Table 4-27 describes the L1P_GetPattern function.

Table 4-27 int L1P_GetPattern(L1P_Pattern_t** pattern)

Table 4-28 on page 48 describes the L1P_DeallocatePattern function.

Latency Implementation might require system calls.
On the CNK, this routine can use the glibc malloc() function internally. The
malloc() function call can then perform brk() or mmap() system calls to
allocate storage.

Description:
Allocates storage to hold an L1p pattern of L1 miss addresses. This allows for the application to
allocate storage for uninitialized patterns. This pattern storage can be passed to L1P_SetPattern().
Storage must be deallocated with L1P_DeallocatePattern().

Name Description

Parameters L1P_Pattern_t*
pattern

Input Pointer to a valid
pattern

Return codes L1P_NOTAPATTERN The specified pointer is not a valid pointer.

Latency Implementation might require system calls.
On CNK, since memory protection is a requirement, this routine will result
in a system call to validate the pattern and setup physical addresses
needed by the hardware.

Description:
Sets the perfect prefetcher's hardware registers with a given pattern. This allows for retaining several
patterns of memory accesses and finer control of the L1p. It is not required for the default usage
model.
The L1p SPI will not deallocate the structure.

Name Description

Parameters L1P_Pattern_t** pattern Output Location to store the
pointer to the pattern
structure.

Return codes L1P_NOTCONFIGURE L1p has not been configured.

Latency Implementation might require system calls.

Description:
� Returns pointers to the current L1p pattern. Later, the pattern pointer can then be passed back

into L1P_SetPattern().
� After L1P_GetPattern is called, the application will own the pattern and must call

L1P_DeallocatePattern() to reclaim that storage. This allows pattern storage that is allocated
through L1P_PatternConfigure() to be detached and retained for later usage.

This allows for retaining several patterns of memory accesses and finer control of the L1p. It is not
required for the default usage model.

Name Description
Chapter 4. Memory 47

Table 4-28 int L1P_DeallocatePattern(L1P_Pattern_t* ptr)

Table 4-29 describes the L1P_PatternSetPatternLimit function.

Table 4-29 int L1P_PatternSetPatternLimit(L1P_PatternLimitPolicy_t policy, int numallocatedpatterns,)

Table 4-30 describes the L1P_PatternGetPatternLimit function.

Table 4-30 int L1P_PatternGetPatternLimit(L1P_PatternLimitPolicy_t* policy, int* numactivelists)

Name Description

Parameters L1P_Pattern_t* ptr Input Pointer to an existing memory
access pattern.

Return codes L1P_NOTAPATTERN The specified pointer is not a valid pointer.

Latency Implementation might require system calls.
On CNK, this routine can use the glibc free() routine internally. The free()
call can then perform brk() or munmap() system calls to deallocate storage.

Description:
Deallocates storage previously assigned to the list of addresses.
This allows for the application to deallocate storage for patterns that have been detached from normal
L1p SPI control.
Do not use L1P_DeallocatePattern() on non-detached patterns.

Item Description

Parameters L1P_PatternLimitPolic
y_t policy

Input Specifies the behavior
when the number of
allocated patterns has
been exceeded.

int
numallocatedpatterns

Input Number of allocated
patterns that are
allowed in the
application

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Sets behavior when the number of allocated patterns that the application can have active exceeds an
artificial limit. This can be used to determine if there is a memory leak in the pattern allocations.
The default policy is L1P_PatternLimit_Disable.

Item Description

Parameters L1P_PatternLimitPolic
y_t policy

Output Behavior when the
number of allocated
patterns has been
exceeded.

int numactivelists Output Number of
active/allocated
patterns that are
allowed in the
application

Return codes None defined
48 IBM System Blue Gene Solution: Blue Gene/Q Application Development

L1P linear stream prefetcher control functions
This section describes the L1p linear stream prefetcher control functions.

Table 4-31 describes the L1P_GetStreamAdaptiveMode function.

Table 4-31 int L1P_GetStreamAdaptiveMode(int* adaptiveState)

Table 4-32 describes the L1P_SetStreamAdaptiveMode function.

Table 4-32 int L1P_SetStreamAdaptiveMode(int Enable)

Table 4-33 describes the L1P_GetStreamPolicy function.

Table 4-33 int L1P_GetStreamPolicy(L1P_StreamPolicy_t* policy)

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns the current behavior when the number of allocated patterns that the application can have
active exceeds that limit. The current limit is also returned.

Item Description

Parameters int adaptiveState Output Boolean that indicates
whether adaptive
mode is enabled or
disabled.
TRUE = enabled.
FALSE = disabled.

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns enable/disable status of the linear stream prefetcher's adaptation mode.

Item Description

Parameters int Enable Input Boolean that
enables/disables
adaptive mode.
TRUE = enabled.
FALSE = disabled.

Return codes None defined

Latency Inlineable function call that accesses user-space memory mapped registers

Enables or disables the linear stream prefetcher's depth adaptation mode

Item Description

Parameters L1P_StreamPolicy_t
policy

Output Current L1P stream
policy

Return codes None defined

Item Description
Chapter 4. Memory 49

Table 4-34 describes the L1P_SetStreamPolicy function.

Table 4-34 int L1P_SetStreamPolicy(L1_StreamPolicy_t policy)

Table 4-35 describes the L1P_GetStreamDepth function.

Table 4-35 int L1P_GetStreamDepth(uint32_t* depth)

Table 4-36 describes the L1P_SetStreamDepth function.

Table 4-36 int L1P_SetStreamDepth(uint32_t depth)

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns the linear stream prefetch policy in the specified pointer. The policy controls when a stream
is established.

Item Description

Parameters L1P_StreamPolicy_t
policy

Input New Policy

Return codes L1P_PARMRANGE An invalid stream policy was specified.

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Changes the linear stream prefetch policy. The policy controls when a stream is established.

Item Name

Parameters depth Output Integer 1 to 8 for the
number of 128-byte
lines ahead to fetch for
all future established
stream

Return codes L1P_PARMRANGE The specified address would have resulted in a
segmentation violation.

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Returns the default stream depth when a new stream has been created. This default depth can be
modified on a per stream basis using the adaptive mode (if enabled).

Item Description

Parameters uint32_t depth Input Number of 128 byte
lines ahead to fetch for
all future established
stream.
The valid range is 1 to
8.

Return codes L1P_PARMRANGE Specified stream depth is not within the valid
range.

Latency Inlineable function call that accesses user-space memory mapped registers

Item Description
50 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table 4-37 describes the L1P_GetStreamTotalDepth function.

Table 4-37 int L1P_GetStreamTotalDepth(uint32_t* depth)

Table 4-38 describes the L1P_SetStreamTotalDepth function.

Table 4-38 int L1P_SetStreamTotalDepth(uint32_t depth)

L1p error conditions
Table 4-39 on page 52 describes the L1p error conditions.

Description:
When a new stream is established, the stream is set to the initial target prefetch depth specified by
L1P_SetStreamDepth(). A streams prefetch depth can subsequently vary if the adaptive prefetch
mode is enabled.

Item Description

Parameters depth Integer 1 to 32 for total footprint
of 128-byte lines that the
stream engine will endeavor to
use.

Return codes L1P_PARMRANGE The specified address will
cause a segmentation violation.

Latency Inlineable function call that accesses user-space memory mapped
registers

Description:
Gets the number of 128-byte cache lines that can be used by the linear stream prefetcher. Unallocated
lines will be used by the perfect prefetcher. This can help prevent thrashing between the prefetch
algorithms.

Item Description

Parameters Uint32_t depth Input Total footprint of
128-byte lines stream
engine will endeavor to
use.
The valid range is 1 to
32.

Return codes L1P_PARMRANGE The specified total stream depth is not within the
valid range.

Latency Inlineable function call that accesses user-space memory mapped registers

Description:
Sets the number of 128-byte cache lines that can be used by the linear stream prefetcher. The
unallocated lines will continue to be used by the perfect prefetcher to help prevent thrashing between
the prefetch algorithms.

Item Description
Chapter 4. Memory 51

Table 4-39 L1p error conditions

4.8.4 Performance considerations

This section describes the performance considerations for the L1p prefetcher.

Pattern loading
The L1p hardware can simultaneously load an existing list and create a new list. This can be
used to do continuous refinement of the L1 cache miss list of addresses. However, in some
cases, the first iteration through a routine creates a good enough list, such that additional
gains would be overshadowed by the cost of periodically writing the refined list to DDR
memory. This behavior can be controlled using the record parameter to the
L1P_PatternStart() function.

Pattern creation overhead
There is a memory overhead versus performance overhead optimization with regards to list
creation. When a list has been created, the application can remember the list for future
reference. There is not an architectural limit to the number of lists that can be maintained.
However, each list consumes memory and there is a bookkeeping overhead associated with
tracking the list and keeping it resident in memory. There is also an opportunity cost
associated with using that memory for other optimizations (for example, bigger lookup tables).

When switching between different patterns, the SPI performs one system call to install the
new pattern's address in the L1p registers. Since a system call is a relatively heavy-weight
operation, avoid switching patterns for small sections of code. It preferable to pause the
pattern during these periods. Pausing or resuming a pattern is only a user-space MMIO write
and can be accomplished with only a few instructions.

Error code Description

0 No error

L1P_NOMEMORY There was not enough memory available to set
up the L1P for the given pattern size.

L1P_PARMRANGE The parameters that are passed to the L1P
exceeded the valid range supported by the L1p
hardware.

L1P_PATTERNACTIVE Attempted to use a function when a pattern was
already active. The application must issue an
explicit L1P_PatternStop() before calling the
function.

L1P_NOTAPATTERN The application specified a pointer that either
does not represent a generated pattern or the
pointer is not valid.

L1P_ALREADYCONFIGURED The L1p has already been configured without
being previously unconfigured.

L1P_NOTCONFIGURED The L1p has not been configured.
52 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Prefetcher contention
Each A2 core's L1p is a shared resource: there are four hardware threads on each A2 core
that shares the L1p. Each hardware thread can be running a list using its perfect prefetcher.
Some hardware threads can be performing lots of linear stream prefetches while another
hardware thread is executing a prefetch list pattern.

All of these activities compete for prefetch buffer space in the L1p. The
L1P_SetStreamDepth(), L1P_SetStreamAdaptiveMode(), and L1P_SetStreamTotalDepth()
functions are designed to be used by application developers to balance applications for
optimal performance.

4.9 L2 atomic operations

The Blue Gene/Q nodes have support for atomic memory operations in the L2 cache. In
some circumstances, atomic memory operations can be more efficient than standard
PowerPC larx/stcx atomic instructions. The larx/stcx instructions require at least two
operations for atomicity:

1. A load with reservation, which brings the data back to a processor general-purpose
register (GPR)

2. A store operation, which pushes out the data

Typically, there is also a simple arithmetic operation interposed between those steps. Blue
Gene/Q L2 atomics allow for a single load or store operation to perform a simple arithmetic
operation in the L2 cache. This method saves the latency of the load. If the L2 atomic
operation is a store operation code, the store operation is placed on the queue and the A2
core does not stall.

The CNK has support for Blue Gene/Q L2 atomic operations. However, the memory regions
that contain L2 atomic memory must be predesignated. This predesignation is required
because the CNK must create special memory translation entries for L2 atomic memory. Use
the following SPI routine to predesignate memory:

uint64_t Kernel_L2AtomicsAllocate(void* atomic_vaddress, size_t length);

There are a limited number of memory translation entries. The CNK tries various
combinations of mappings for atomic operations. However, the call can fail. If a failure occurs,
try the call with a different virtual address.

4.10 Speculative execution

The Blue Gene/Q nodes contain a multiversion L2 memory cache that can be configured for
speculative execution (also known as thread level speculation). This support enables the
system software to simultaneously execute portions of the program on up to 128 hardware
threads. The compiler generates multiple possible execution paths. The software runtime
environment uses real-time performance data to determine which path is selected. If the
system detects a conflict, it automatically reruns the code without speculation to ensure
correct execution.

The Symmetric Multi-Processing Runtime (SMPRT) for the compiler and the CNK work
together to configure the hardware for speculative execution support. For more information
about using speculative execution, see the SMPRT #pragmas in the IBM XL compiler
Chapter 4. Memory 53

documentation. Section 7.2.1, “IBM XL compilers” on page 80 describes the IBM XL
compilers.

4.11 Support for dynamic linking

The CNK uses the Linux user callable facility for dynamic linking, which loads a library image
into the virtual address space of an application process. It loads only the executable and
linking format (ELF) sections that are required by the application into the physical memory
space. To release the library from both virtual and physical memory, call the dlclose() function.
This function is similar to the function that is used on the Linux operating system.

The CNK supports Python-based applications with minimal or no modifications. In these
applications, it is necessary to communicate and load appropriate sections of the scientific
codes into the application.

The CNK does not support fork() or exec() functions for shell commands that might be used in
existing Python-based applications. If an application uses the fork() function, the exec()
function commands, or runtime use of shell commands, it might require modification to
execute correctly on the Blue Gene/Q system. Some of the required modifications might
include:

� Replacing use of the Linux cp() (copy) command with inline code to copy files.

� Replacing shell commands with system calls to delete files, for example, use unlink
(“path”) instead of system (“rm -f path”).

� Moving application setup to the front end node.

Each compute node independently requests dynamic libraries to be loaded. This solution
relies on the file system caches on the Linux I/O node to avoid huge spikes in demand to the
file system. It is possible that the file system caching might be insufficient for certain classes
of dynamic applications.

4.12 Transactional memory

Transactional memory can be used to simplify simultaneous use of large numbers of threads.
The Blue Gene/Q nodes contain a multiversion L2 memory cache that can be configured for
transactional memory.

When transactional memory mode is used, the user defines the parallel work to be done. The
user also defines which code is atomic. The hardware automatically detects memory read or
write conflicts in the atomic region and the runtime retries the region. When many sections of
code are marked atomic, performance can be reduced if these sections are frequently rerun.

The XLSMP runtime and the CNK work together to configure the hardware to support
transactional memory. For more information about using transactional memory, see the
SMPRT #pragmas in the IBM XL compiler documentation. Section 7.2.1, “IBM XL compilers”
on page 80 describes the IBM XL compilers.
54 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 5. Compute Node Kernel interfaces

This chapter describes the kernel interfaces that the CNK provides for applications that run on
compute nodes. It includes the following information:

� Lightweight principles
� Kernel access
� System calls

5

© Copyright IBM Corp. 2013. All rights reserved. 55

5.1 Lightweight principles

The CNK is designed as a simple and lightweight kernel to maximize performance and
reliability for high-performance computing (HPC) applications. It provides an environment for
running user processes that is similar to Linux. It is not a full Linux kernel implementation.
Instead, it implements a subset of the Linux functionality and a subset of the Portable
Operating System Interface (POSIX) functionality.

5.2 Kernel access

The following interfaces can be used to access the CNK services:

� Application programming interface (API) provided by the library
� System programming interface (SPI) provided by the kernel
� System call (syscall) interface provided by the kernel

5.2.1 Application programming interfaces

The library provides various APIs. Each API can be used to send system calls to the CNK.
Some of these APIs are lightweight wrappers to the kernel system calls. Some APIs provide
more library functionality and might call more than one system call per invocation. This
section describes three groups of supported APIs:

� File I/O and directory operations
� Sockets
� Process and threads

File I/O and directory operations
Instead of executing the system call on the compute node, the CNK might send the system
call to the I/O node for execution. This is described as function-shipping the system call.
Depending on the targeted file system, the CNK might function-ship system calls that are
invoked by these APIs to the Common Input Output Services (CIOS) service on the I/O node.
The CIOS is a user-level process that services applications in the compute node. The
decision to function-ship a specific request depends on the file system that is targeted by the
API and the specific system call that is used by the API. Table 5-1 shows the File I/O and
directory operations.

Table 5-1 File I/O and directory operations

Function prototype Header required Description and type

int access(const char *path, int
mode);

<unistd.h> Determines the accessibility of a file.
Mode: R_OK, X_OK, F_OK; returns 0
on success or -1 on error.

int chmod(const char *path,
mode_t mode);

<sys/types.h>
<sys/stat.h>

Changes the access
permissions on an already open
file.
Mode: S_ISUID, S_ISGID, S_ISVTX,
S_IRWXU, S_IRUSR, S_IWUSR,
S_IXUSR, S_IRWXG, S_IRGRP,
S_IWGRP, S_IXGRP, S_IRWXO,
S_IROTH, S_IWOTH, and S_IXOTH.
Returns 0 if the permissions are
correct or -1 on error.
56 IBM System Blue Gene Solution: Blue Gene/Q Application Development

int chown(const char *path, uid_t
owner, gid_t group);

<sys/types.h>
<sys/stat.h>

Changes the owner and group of a
file.

int close(int fd); <unistd.h> Closes a file descriptor. Returns 0 on
success or -1 on error.

int dup(int fd); <unistd.h> Duplicates an open descriptor.
Returns a new file descriptor on
success or -1 on error.

int dup2(int fd, int fd2); <unistd.h> Duplicates an open descriptor.
Returns a new file descriptor on
success or -1 on error.

int fchmod(int fd, mode_t mode); <sys/types.h>
<sys/stat.h>

Changes the mode of a file. Returns 0
on success or -1 on error.

int fchown(int fd, uid_t owner,
gid_t group);

<sys/types.h>
<unistd.h>

Changes the owner and group of
a file. Returns 0 on success or -1 on
error.

int fcntl(int fd, int cmd, int arg); <sys/types.h>
<unistd.h>
<fcntl.h>

Manipulates a file descriptor.
Supported commands are F_GETFL,
F_DUPFD, F_GETLK, F_SETLK,
F_SETLKW, F_GETLK64,
F_SETLK64, F_SETLKW64.

int fstat(int fd, struct stat *buf); <sys/types.h>
<sys>/<stat.h>

Gets the file status. Returns 0 if
correct or -1 on error.

int stat64(const char *path, struct
stat64 *buf);

<sys/types.h>
<sys>/<stat.h>

Gets the file status.

int statfs(const char *path, struct
statfs *buf);

<sys/vfs.h> Gets the file system statistics.

long fstatfs64 (unsigned int fd,
size_t sz, struct statfs64 buf);

<sys/vfs.h> Gets the file system statistics.

int fsync(int fd); <unistd.h> Synchronizes changes to a file.
Returns 0 on success or -1 on error.

int ftruncate(int fd, off_t length); <sys/types.h>
<unistd.h>

Truncates a file to a specified length.
Returns 0 on success or -1 on error.

int ftruncate64(int fildes, off64_t
length);

<unistd.h> Truncates a file to a specified length
for files larger than 2 GB. Returns 0 on
success or -1 on error.

int lchown(const char *path, uid_t
owner, gid_t group);

<sys/types.h>
<unistd.h>

Changes the owner and group of a
symbolic link. Returns 0 on success
or -1 on error.

int link(const char *existingpath,
const char *newpath);

<unistd.h> Links to a file. Returns 0 on success
or -1 on error.

off_t lseek(int fd, off_t offset, int
whence);

<sys/types.h>
<unistd.h>

Moves the read/write file offset.
Returns 0 on success or -1 on error.

Function prototype Header required Description and type
Chapter 5. Compute Node Kernel interfaces 57

int _llseek(unsigned int fd,
unsigned long offset_high,
unsigned long offset_low, loff_t
*result, unsigned int whence);

<unistd.h>
<sys/types.h>
<linux/unistd.h>
<errno.h>

Moves the read/write file offset.

int lstat(const char *path, struct
stat *buf);

<sys/types.h>
<sys>/<stat.h>

Gets the symbolic link status. Returns
0 on success or -1 on error.

int lstat64(const char *path, struct
stat64 *buf);

<sys/types.h>
<sys/stat.h>

Gets the symbolic link status.
Determines the size of a file larger
than 2 GB.

int open(const char *path, int
oflag, mode_t mode);

<sys/types.h>
<sys>/<stat.h>
<fcntl.h>

Opens a file. oflag: O_RDONLY,
O_WRONLY, O_RDWR, O_APPEND,
O_CREAT, O_EXCL, O_TRUNC,
O_NOCTTY, O_SYNC, mode:
S_IRWXU, S_IRUSR, S_IWUSR,
S_IXUSR, S_IRWXG, S_IRGRP,
S_IWGRP, S_IXGRP, S_IRWXO,
S_IROTH, S_IWOTH, and S_IXOTH.
Returns the file descriptor on success
or -1 on error.

ssize_t pread(int fd, void *buf,
size_t nbytes, off64_t offset);

<unistd.h> Reads from a file at offset. Returns
the number of bytes read on success,
0 if end of file, or -1 on error.

ssize_t pwrite(int fd, const void
*buf, size_t nbytes, off64_t
offset);

<unistd.h> Writes to a file at offset; returns the
number of bytes written on success or
-1 on error.

ssize_t read(int fd, void *buf,
size_t nbytes);

<unistd.h> Reads from a file. Returns the number
of bytes read on success, 0 if end of
file, or -1 on error.

int readlink(const char *path, char
*buf, int bufsize);

<unistd.h> Reads the contents of a symbolic link.
Returns the number of bytes read on
success or -1 on error.

ssize_t readv(int fd, const struct
iovec iov[], int iovcnt)

<sys/types.h>
<sys/uio.h>

Reads a vector. Returns the number
of bytes read on success or -1 on
error.

int rename(const char *oldname,
const char *newname);

<stdio.h> Renames a file. Returns 0 on success
or -1 on error.

int stat(const char *path, struct
stat *buf);

<sys/types.h>
<sys/stat.h>

Gets the file status. Returns 0 on
success or -1 on error.

int stat64(const char *path, struct
stat64 *buf);

<sys/types.h>
<sys/stat.h>

Gets the file status.

int statfs (char *path, struct statfs
*buf);

<sys/types.h>
<sys/stat.h>

Gets the file system statistics.

long statfs64 (const char *path,
size_t sz, struct statfs64 *buf);

<sys/statfs.h> Gets the file system statistics.

int symlink(const char
*actualpath, const char
*sympath);

<unistd.h> Makes a symbolic link to a file.
Returns 0 on success or -1 on error.

Function prototype Header required Description and type
58 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Sockets
The socket support allows the creation of both outbound and inbound socket connections with
standard Linux APIs. For example, an outbound socket can be created by calling the socket()
function, followed by the connect() function. An inbound socket can be created by calling the
socket() function followed by the bind(), listen(), and accept() functions.

Communication through the socket is provided by the glibc send(), recv(), and select()
function calls. These function calls run the socketcall() system call with different parameters.

int truncate(const char *path,
off_t length);

<sys/types.h>
<unistd.h>

Truncates a file to a specified length.
Returns 0 on success or -1 on error.

truncate64(const char *path, off_t
length);

<unistd.h>
<sys/types.h>

Truncates a file to a specified length.

mode_t umask(mode_t cmask); <sys/types.h>
<sys/stat.h>

Sets and gets the file mode creation
mask. Returns the previous file mode
creation mask.

int unlink(const char *path); <unistd.h> Removes a directory entry. Returns 0
on success or -1 on error.

int utime(const char *path, const
struct utimbuf *times);

<sys/types.h>
<utime.h>

Sets the file access and modification
times. Returns 0 on success or -1 on
error.

ssize_t write(int fd, const void
*buff, size_t nbytes);

<unistd.h> Writes to a file. Returns the number of
bytes written on success or -1 on
error.

ssize_t writev(int fd, const struct
iovec iov[], int iovcntl);

<sys/types.h>
<sys/uio.h>

Writes a vector. Returns the number
of bytes written on success or -1 on
error.

int chdir(const char *path); <unistd.h> Changes the working directory.
Returns 0 on success or -1 on error.

char *getcwd(char *buf, size_t
size);

<unistd.h> Gets the path name of the current
working directory. Returns the buf
value on success or NULL on error.

int getdents(int fildes, char **buf,
unsigned nbyte);

<sys/types.h> Gets the directory entries in a file
system. Returns 0 on success or -1
on error.

int getdents64(unsigned int fd,
struct dirent *dirp, unsigned int
count);

<sys/dirent.h> Gets the directory entries in a file
system.

int mkdir(const char *path,
mode_t mode);

<sys/types.h>
<sys/stat.h>

Makes a directory; mode: S_IRUSR,
S_IWUSR, S_IXUSR, S_IRGRP,
S_IWGRP, S_IXGRP, S_IROTH,
S_IWOTH, and S_IXOTH. Returns 0
on success or -1 on error.

int rmdir(const char *path); <unistd.h> Removes a directory. Returns 0 on
success or -1 on error.

Function prototype Header required Description and type
Chapter 5. Compute Node Kernel interfaces 59

The CNK provides socket support through the standard Linux socketcall() system call. The
CNK function-ships the socketcall() system call to the CIOS, which performs the requested
operation.

Table 5-2 summarizes the supported socket APIs.

Table 5-2 Supported socket APIs

Function prototype Header required Description and type

int accept(int sockfd, struct
sockaddr *addr, socklen_t
*addrlen);

<sys/types.h>
<sys/socket.h>

Extracts the connection request on
the queue of pending connections.
Creates a new connected socket.
Returns a file descriptor on success
or -1 on error.

int bind(int sockfd, const struct
sockaddr *my_addr, socklen_t
addrlen);

<sys/types.h>
<sys/socket.h>

Assigns a local address. Returns 0 on
success or -1 on error.

int connect(int socket, const
struct sockaddr *address,
socklen_t address_len);

<sys/types.h>
<sys/socket.h>

Connects a socket. Returns 0 on
success or -1 on error.

int getpeername(int socket, struct
sockaddr *restrict address,
socklen_t *restrict address_len);

<sys/socket.h> Gets the name of the peer socket.
Returns 0 on success or -1 on
error.

int getsockname(int socket, struct
sockaddr *restrict address,
socklen_t *restrict address_len);

<sys/types.h>
<sys/socket.h>

Gets the name of the peer socket.
Returns 0 on success or -1 on
error.

int getsockopt(int s, int level, int
optname, void *optval, socklen_t
*optlen);

<sys/socket.h> Manipulates options that are
associated with a socket. Returns 0
on success or -1 on error.

int listen(int sockfd, int backlog); <sys/types.h>
<sys/socket.h>

Accepts connections. Returns 0 on
success or -1 on error.

int poll(struct pollfd fds[], nfds_t nfds,
int timeout);

#include <poll.h> The poll() function provides
applications with a mechanism for
multiplexing input/output over a set of
file descriptors.

ssize_t recv(int s, void *buf, size_t
len, int flags);

<sys/types.h>
<sys/socket.h>

Receives a message only from a
connected socket. Returns 0 on
success or -1 on error.

ssize_t recvfrom(int s, void *buf,
size_t len, int flags, struct
sockaddr *from, socklen_t
*fromlen);

<sys/types.h>
<sys/socket.h>

Receives a message from a socket
regardless of whether it is connected.
Returns 0 on success or -1 on error.

ssize_t recvmsg(int s, struct
msghdr *msg, int flags);

<sys/types.h>
<sys/socket.h>

Receives a message from a socket
regardless of whether it is connected.
Returns 0 on success or -1 on error.

ssize_t send(int socket, const
void *buffer, size_t length, int
flags);

<sys/types.h>
<sys/sockets.h>

Sends a message only to a connected
socket. Returns 0 on success or -1 on
error.
60 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Processes and threads
This section shows the supported APIs that are associated with the control and access of
processes and threads executing on the compute nodes. Additional APIs might operate
correctly if they use the system calls that are supported by the CNK.

Table 5-3 lists the supported process and thread management APIs.

Table 5-3 Supported APIs for managing threads that run on compute nodes

ssize_t sendto(int socket, const
void *message, size_t length, int
flags, const struct sockaddr
*dest_addr, socklen_t dest_len);

<sys/types.h>
<sys/socket.h>

Sends a message on a socket.
Returns 0 on success or -1 on error.

ssize_t sendmsg(int s, const
struct msghdr *msg, int flags);

<sys/types.h>
<sys/socket.h>

Sends a message on a socket.
Returns 0 on success or -1 on error.

int setsockopt(int s, int level, int
optname, const void *optval,
socklen_t optlen);

<sys/types.h>
<sys/socket.h>

Manipulates options that are
associated with a socket. Returns 0
on success or -1 on error.

int shutdown(int s, int how); <sys/socket.h> Causes all or part of a connection on
the socket to shut down. Returns 0 on
success or -1 on error.

int socket(int domain, int type, int
protocol);

<sys/types.h>
<sys/socket.h>

Opens a socket. Returns a file
descriptor on success or -1 on error.

int socketpair(int d, int type, int
protocol, int sv[2]);

<sys/types.h>
<sys/socket.h>

Creates an unnamed pair of
connected sockets. Returns 0 on
success or -1 on error.

Function prototype Header required Description and type

Function prototype Header required Description and type

gid_t getgid(void); <unistd.h> Gets the group ID.

pid_t getpid(void); <unistd.h> Gets the process ID. This ID is a
nonzero value that uniquely identifies
a process with a node. This ID is not
unique across all of the processes in
a job.

int getrlimit(int resource, struct
rlimit *rlp)

<sys/resource.h> Gets information about resource
limits.

int getrusage(int who, struct
rusage *r_usage);

<sys/resource.h> Gets information about resource use.
All time reported is attributed to the
user application, so the reported
system time is always zero.

uid_t getuid(void); <unistd.h> Gets the user ID.

int setrlimit(int resource, const
struct rlimit *rlp);

<sys/resource.h> Sets resource limits. Only
RLIMIT_CORE can be set.

clock_t times(struct tms *buf); <sys/times.h> Gets the process times. All time
reported is attributed to the user
application, so the reported system
time is always zero.
Chapter 5. Compute Node Kernel interfaces 61

5.2.2 System programming interface

The SPI that is provided by the CNK allows low-level access to Blue Gene/Q-specific
interfaces. Many of the SPIs are implemented using special internal Blue Gene/Q system
calls. Some of the SPIs are implemented in the user state and do not require entry into the
kernel.

For information about kernel SPIs, see the installed documentation in the
/bgsys/drivers/ppcfloor/spi/doc/html directory. This information is also available on the
Knowledge Center tab in Navigator.

int brk(void *end_data_segment); <unistd.h> Changes the allocated size in the
heap segment.

void exit(int status) <stdlib.h> Terminates a process.

int uname(struct utsname *buf); <sys/utsname.h> Gets the name of the current system
and other information, for example,
the version and release.

void *mmap(void *addr, size_t len, int
prot, int flags,
int fildes, off_t off);

#include <sys/mman.h> Establishes a mapping between a
process address space and a file,
shared memory object, or typed
memory object.

int shm_open(const char *name, int
oflag, mode_t mode);

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

Creates and opens a new, or opens
an existing, POSIX shared memory
object.

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr, void
*(*start_routine) (void *), void *arg);

#include <pthread.h> Starts a new thread in the calling
process.

void pthread_exit(void *retval); #include <pthread.h> Terminates the calling thread.

int pthread_yield(void); <sched.h> Forces the running thread to
relinquish the processor.

pthread_setschedprio(pthread_t
thread, int prio);

#include <pthread.h> Sets the scheduling priority of the
thread.

int nanosleep(const struct timespec
*req, struct timespec *rem);

#include <time.h> Suspends the execution of the calling
thread until either at least the time
specified.

int kill(pid_t pid, int sig); <signal.h> Sends a signal. A signal can be sent
only to the same process.

int sigaction(int signum, const
struct sigaction *act, struct
sigaction *oldact);

<signal.h> Allows the calling process to examine
and specify the action to be
associated with a specific signal.

typedef void (*sighandler_t)(int)
sighandler_t signal(int signum,
sighandler_t handler);

<signal.h> This interface is supported for existing
applications. Use the sigaction
interface for new applications.

int shm_open(const char *name, int
oflag, mode_t mode);

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

Creates and opens a new, or opens
an existing, POSIX shared memory
object.

Function prototype Header required Description and type
62 IBM System Blue Gene Solution: Blue Gene/Q Application Development

The following tables list the header files that contain the SPIs and describe the SPIs in the
files.

Table 5-4 lists the supported SPI header files.

Table 5-4 SPI header files and the interfaces they provide

5.3 System calls

The system call is the lowest-level interface that an application can use to access kernel
functions. It is typically best to use the library APIs as the primary interface to the kernel. See
5.2.1, “Application programming interfaces” on page 56. However, direct execution of system

Interface file Description

/spi/include/kernel/collective.h Allocates the collective class route IDs, and sets the configuration of collective
class routes.

/spi/include/kernel/gi.h Allocates the global interrupt class route IDs, and sets the configuration of global
interrupt class routes.

/spi/include/kernel/location.h Provides location information including the node location in the block, process
information with the node, the core in the node, and the hardware thread in the
core.

/spi/include/kernel/memory.h Manages regions of memory within the compute node. Opens the persistent
memory handle with the persist_open kernel function.

/spi/include/kernel/process.h Retrieves information about the process. This information includes how many
processes are configured per node, how many processors are assigned to a
process, which hardware threads are assigned to the process.

/spi/include/kernel/spec.h Controls the speculative execution of threads.

/spi/include/kernel/thread.h Retrieves scheduler information about active and runnable pthreads on a
hardware thread.

/spi/include/kernel/MU.h Controls and retrieves information from the messaging unit hardware.

/spi/include/kernel/rdma.h Interfaces for an abbreviated version of OFED RDMA CM from the compute
node to its I/O node.

/spi/include/kernel/sendx.h Provides extensions to the light-weight kernel for user-defined function-shipping
exchanges with a dynamically loaded library attached to the sysiod daemon on
the I/O node.
The extensions are in a derived plug-in class that is coded by the user on the I/O
node where the base class is defined in /ramdisk/include/services/Plugin.h.
The function-ship operations include simple message passing to the more
complex operations of RDMA and using file descriptors.

/spi/include/l1p/pprefetch.h Controls the perfect prefetcher hardware.

/spi/include/l1p/sprefetch.h Controls the stream prefetcher hardware.

/spi/include/l1p/flush.h Causes an L1P flush of all pending load and store operations to the L2 cache.

/spi/include/l2/atomic.h L2 atomic operations.

/spi/include/l2/barrier.h L2 atomic-based barrier operations.

/spi/include/l2/lock.h L2 atomic-based lock operations.
Chapter 5. Compute Node Kernel interfaces 63

calls is allowed and is sometimes required. Example 5-1 shows an example of a direct
invocation of a system call.

Example 5-1 Direct invocation of a system call

#include <unistd.h>
#include <sys/syscall.h>
#include <sys/types.h>
main(int argc, char *argv[])
{
pid_t tid;
tid = syscall(SYS_gettid);
}

Supported Linux APIs
The following system calls are supported by the CNK.

All other system calls return the errno value ENOSYS.

Additional information about system calls
For more information about Linux system calls, see the syscalls(2) manual page.

ftruncate64
futex
getcwd
getdents
getdents64
getgroups
getitimer
getpid
getrlimit
getrusage
gettid
gettimeofday
ioctl

kill
lseek
lstat
lstat64
mkdir
mmap
mremap
munmap
nanosleep
open
poll
prctl
pread64

pwrite64
read
readlink
readv
rename
rmdir
rt_sigaction
rt_sigprocmask
sched_get_priority_max
sched_get_priority_min
sched_getaffinity
sched_getparam
sched_setscheduler

sched_yield
setitimer
setrlimit
sigaction
signals
sigprocmask
socketcall
stat
stat64
statfs
statfs64
symlink

time
times
tmwrite
truncate
truncate64
uid
umask
uname
unlink
utime
write
writev
64 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 6. Parallel paradigms

This chapter contains information about the parallel paradigms that are offered on the Blue
Gene/Q system. These paradigms include MPI for distributed-memory architecture and the
OpenMP API for shared-memory architectures. These paradigms are referred to as
high-performance computing (HPC). The Blue Gene/Q system also offers a paradigm where
applications do not require communication between tasks and each node is running a
different instance of the application. This paradigm is known as high-throughput computing
(HTC).

This chapter addresses the following topics:

� Programming model
� Blue Gene/Q MPI implementation
� Blue Gene/Q MPI extensions
� MPI functions
� Compiling MPI programs on the Blue Gene/Q system
� OpenMP
� Multiple Program, Multiple Data

6

© Copyright IBM Corp. 2013. All rights reserved. 65

6.1 Programming model

The Blue Gene/Q system has a distributed memory system and uses explicit message
passing to communicate between tasks that are running on different nodes. Each node has
shared memory. The OpenMP API and thread parallelism are supported.

The MPI standard is also supported. For more information, see the Message Passing
Interface Forum site on the web at the following address:

http://www.mpi-forum.org/

The Blue Gene/Q MPI implementation uses the IBM Parallel Active Messaging Interface
(PAMI) as a low-level messaging interface. The Blue Gene/Q PAMI implementation directly
accesses the Blue Gene/Q hardware through the message unit system programming
interface (MUSPI). The MPI, PAMI, and MUSPI interfaces are public, supported interfaces on
the Blue Gene/Q system. These interfaces can be used by applications to perform
communication operations. For more information about PAMI, see the installed
documentation in the /bgsys/drivers/ppcfloor/comm/doc/html directory. This information is
also available on the Knowledge Center tab in Navigator.

Other programming paradigms for the Blue Gene/Q system use one or more of the supported
software interfaces, as illustrated in Figure 6-1. Support for these alternative paradigms is
provided by the open source communities that develop them.

Figure 6-1 Messaging software stack

MPICH2
2.x

Blue Gene/Q system

PAMI API

Blue Gene/Q
messaging

implementation

MUSPI

PAMI
ADI

Applications

M
id

dl
ew

ar
e

S
ys

te
m

 S
of

tw
ar

e

66 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://www.mpi-forum.org/

6.2 Blue Gene/Q MPI implementation

The MPI implementation on the Blue Gene/Q system supports the MPI-2.1 standard, except
for the process creation and management functions. The MPI-2.1 standard is available from
the following website:

http://www.mpi-forum.org/docs/docs.html

The MPI implementation on the Blue Gene/Q system is derived from the MPICH2
implementation of the Mathematics and Computer Science Division (MCS) at Argonne
National Laboratory. For more information, see the MPICH2 website:

http://www.mcs.anl.gov/research/projects/mpich2/

To support the Blue Gene/Q hardware, the following additions and modifications are made to
the MPICH2 software architecture:

� An additional Blue Gene/Q driver implements the MPICH2 abstract device interface (ADI).
� MPIX functions create hardware-specific MPI extensions.

The most significant change is that collective operations can use different networks in
different circumstances.

Section 6.2.1, “High-performance network for efficient parallel execution” on page 67
summarizes the different networks on the Blue Gene/Q system and network routing.

Sections 6.2.2, “Forcing MPI to allocate too much memory” on page 69 through 6.2.7, “Buffer
alignment sensitivity” on page 71 contain information about several sample MPI codes. These
sections explain some of the implementation-dependent behaviors of the MPI library. Section
6.3.2, “Determining hardware properties” on page 73 contains an automatic optimization
technique that is available on the Blue Gene/Q MPI implementation.

6.2.1 High-performance network for efficient parallel execution

The Blue Gene/Q system provides two different communication networks for hardware
acceleration for certain collective operations.

Five-dimensional torus network
The five-dimensional (5D) torus network provides point-to-point and collective communication
facilities. The network has an embedded arithmetic logic unit (ALU) system for doing math
operations (for example, during a reduction operation). The ALU supports floating-point data
and supports sum and min or max operations. Hardware acceleration with the ALUs is
available on subcommunicators and MPI_COMM_WORLD. However, a limited number of
class routes are available. If a single job uses multiple subcommunicators, the hardware
acceleration is not available on some subcommunicators. Section 6.3.1, “Changing
class-route usage at run time” on page 72 describes how to control which communicators are
hardware accelerated.

For point-to-point messaging, the route from a sender to a receiver on a torus network has the
following two possible paths:

Deterministic
routing Packets from a sender to a receiver go along the same path. One

advantage of this path is that the packet order is always maintained
without additional logic. However, this technique also creates network
hot spots if several point-to-point communications occur
simultaneously and their deterministic routes cross on some node.
Chapter 6. Parallel paradigms 67

http://www.mpi-forum.org/docs/docs.html
http://www.mcs.anl.gov/research/projects/mpich2/

Adaptive routing Different packets from the same sender to the same receiver can
travel along different paths. The exact route is determined at run time,
depending on the current load. This technique generates a more
balanced network load but introduces a latency penalty.

The appropriate deterministic or adaptive routing depends on the protocol that is used for
communication. The Blue Gene/Q MPI implementation supports four different protocols:

Immediate protocol The immediate protocol is used for messages smaller than or equal to
112 bytes. These messages are always deterministically routed.

Short protocol The short protocol is used for messages that comprise a single packet.
Internal protocol metadata uses 16 bytes of the torus packet payload,
leaving a maximum of 496 bytes of application data that can be
transferred with the short protocol. These messages are always
deterministically routed.

Eager protocol The eager protocol is used for medium-sized messages. This protocol
sends messages to the receiver without negotiating that the receiver is
ready to receive the message. This process can cause an unexpected
message to be received, which requires an unexpected memory buffer
to be allocated and maintained until the receiver posts a matching
MPI_Recv value. For more information, see Section 6.2.2, “Forcing
MPI to allocate too much memory” on page 69. The eager protocol
uses deterministic routes for its packets.

Rendezvous
protocol Large messages are sent using the rendezvous protocol. In this case,

an initial connection between the two partners is established. The
receiver uses remote direct memory access to obtain data from the
sender only after that connection is established. This protocol uses
adaptive routing and is optimized for maximum bandwidth. By default,
the MPI send operations use the rendezvous protocol, instead of the
eager protocol, for messages larger than 2048 bytes. The initial
rendezvous handshake increases the latency.

The Blue Gene/Q MPI library supports a PAMID_RZV environment variable, which can be set
by the runjob command. Use this variable to set the message size, in bytes, as described in
the preceding list, for the rendezvous protocol. Consider the following guidelines:

� Decrease the rendezvous threshold if any of the following situations are true:

– High overlap of communication and computation is required.
– Eager messages are creating artificial hot spots, resulting in network congestion.
– Low latency is not required for medium-length messages.
– Unexpected messages are causing the application to run out of memory.

� Increase the rendezvous threshold if any of the following situations are true:

– Most communication is to the nearest neighbor.
– Low latency is required for medium-length messages.

� Set the rendezvous threshold to 0 if the following situation is true:

– High memory use due to eager connection data structures in a large-scale job is
causing the application to run out of memory.

Several other environment variables can be used to customize MPI communications. See
Appendix D, “MPI and CNK environment variables” on page 129 for descriptions of these
environment variables.
68 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Use the following guidelines to maximize efficiency for MPI applications on the Blue Gene/Q
system:

� Overlap communication and computation using the MPI_Irecv() and MPI_Isend()
functions, which allow the messaging unit (MU) hardware to complete the data transfer in
the background.

� Avoid load imbalance.

� Avoid buffered and synchronous sends. Post receives in advance.

The MPI standard defines several specialized communication modes in addition to the
standard send function, MPI_Send(). Avoid the buffered send function, MPI_Bsend(),
because it causes the MPI library to perform additional memory copies. Avoid using the
synchronous send function, MPI_Ssend(), because it is not a local operation. It incurs an
increased latency compared to the standard send without saving memory allocation.

� Avoid vector data and noncontiguous data types.

While the MPI-derived data types can elegantly describe the layout of complex data
structures, using these data types is generally detrimental to performance. Many MPI
implementations, including the Blue Gene/Q MPI implementation, pack (that is, memory
copy) such data objects before sending them. This packing of data objects is contrary to
the original purpose of MPI-derived data types, which is to avoid such memory copies.
Memory copies are particularly expensive on Blue Gene/Q because the network hardware
is extremely fast relative to the processor clock. To improve application performance, avoid
noncontiguous MPI data types and memory copies.

6.2.2 Forcing MPI to allocate too much memory

Avoid forcing MPI to allocate too much memory, which is easy to do with basic code. For
example, the legal MPI code shown in Example 6-1 might force too much memory allocation.
Memory must be allocated to temporarily store the incoming message data from CPU1, and
to add an unexpected request object to the MPI receive queue, until a matching receive is
posted by CPU2. If too much memory is allocated, failures occur because of excessive
message buffering.

Example 6-1 MPI code that can cause excessive memory allocation

MPI_Isend(cpu2, tag1);
MPI_Isend(cpu2, tag2);
...
MPI_Isend(cpu2, tagn);
...
MPI_Recv(cpu1, tagn);
MPI_Recv(cpu1, tagn-1);
...
MPI_Recv(cpu1, tag1);

In addition to memory allocation issues, application performance can be degraded due to the
presence of many unexpected messages. The message request queue is searched linearly
to meet MPI matching requirements. If many messages are on the request queue, perhaps
due to a flood of unexpected messages, the search can take longer.

You can accomplish the same goal and avoid memory allocation and request queue
performance issues by recoding as shown in Example 6-2 on page 70.
Chapter 6. Parallel paradigms 69

Example 6-2 MPI code that can prevent excessive memory allocation

MPI_Isend(cpu2, tag1);
MPI_Isend(cpu2, tag2);
...
MPI_Isend(cpu2, tagn);
...
MPI_Recv(cpu1, tag1);
MPI_Recv(cpu1, tag2);
...
MPI_Recv(cpu1, tagn);

The Blue Gene/Q MPI rendezvous protocol does not allocate a temporary buffer to receive
unexpected messages. However, a request object must still be allocated for the receive
queue until the matching send information is received. The rendezvous protocol reduces
memory use from unexpected buffers, but it does not prevent memory allocation issues or
receive queue performance issues. Correct buffer allocation prevents most problems by
significantly reducing the memory footprint and presence of unexpected messages.

6.2.3 Not waiting for the MPI_Test function

According to the MPI standard, an application must either wait or continue testing until the
MPI_Test function returns true. If the application does not wait, small memory leaks might
occur. These leaks can accumulate over time and cause a memory overrun. Example 6-3
shows the code and the problem.

Example 6-3 Potential memory overrun caused by not waiting for the MPI_Test function

req = MPI_Isend(...);
MPI_Test (req);
... do something else; forget about req ...

Use the MPI_Wait function or loop until the MPI_Test function returns true.

6.2.4 Flooding the network with messages

The code shown in Example 6-4 is legal, but it floods the network with messages. It can
cause CPU 0 to run out of memory. This code might work in some cases, but it is not scalable.

Example 6-4 Flood of messages that can cause a memory overrun

if (rank != 0) MPI_Send(... to rank 0 ...);
else if (rank == 0) {
 for (i=1; i<n; i++) MPI_Recv(... from rank i ...);
}

6.2.5 Deadlocking the system

The code shown in Example 6-5 on page 71 does not conform to the MPI standard. Each
side does a blocking send to its communication partner before posting a receive
acknowledgment for the message coming from the other partner.
70 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Example 6-5 MPI code that can deadlock the system

if (task == task1) {
 MPI_Send(... to task2 ...);
 MPI_Recv(... from task2 ...);
}
if (task == task2) {
 MPI_Send(... to task1 ...);
 MPI_Recv(... from task1 ...);
}

This code has a high probability of deadlocking the system. Ensure that your code conforms
to the MPI specification by changing the order of sends and receives or by using nonblocking
communication calls.

Do not rely on the runtime system to correctly handle nonconforming MPI code. However, it is
easier to debug such situations when you receive a runtime error message than to try and
detect a deadlock and trace it back to its root cause.

6.2.6 Violating MPI buffer ownership rules

A number of problems can occur when the send/receive buffers that participate in
asynchronous message-passing calls are accessed before it is legal to do so. This section
shows examples of incorrect code.

One common mistake is to write to a send buffer before the MPI_Wait() function for that
request has completed as shown in Example 6-6.

Example 6-6 Write to a send buffer before the MPI_Wait() function has completed

req = MPI_Isend(buffer,&req);
buffer[0] = something;
MPI_Wait(req);

The code in Example 6-6 causes a race condition with any MPI implementation. Depending
on runtime factors that the application cannot control, sometimes the old buffer[0] is sent and
sometimes the new value is sent.

In Example 6-7, a receive buffer is read before MPI_Wait() function because the
asynchronous receive request has completed.

Example 6-7 Receive buffer before MPIWait() function completes

req = MPI_Irecv(buffer);
z = buffer[0];
MPI_Wait (req);

The code shown in Example 6-7 is illegal. The contents of the receive buffer are not
guaranteed until after MPI_Wait() function is called.

6.2.7 Buffer alignment sensitivity

The MPI implementation on the Blue Gene/Q system is sensitive to the alignment of the
buffers that are being sent or received. Aligning buffers on 32-byte boundaries can improve
performance. If the buffers are at least 32-bytes aligned, the messaging software can use
Chapter 6. Parallel paradigms 71

internal math routines that are quad-processing extension (QPX) optimized. Additionally, the
L1 cache is optimized on 64-byte boundaries.

For buffers that are declared in static (global) storage, use attribute{_}_((aligned(32))) on the
declaration as shown in Example 6-8.

Example 6-8 Buffers that are declared in static (global) storage

struct DataInfo
{
unsigned int iarray[256];
unsigned int count;
} data_info __attribute__ ((aligned (32)));
or
unsigned int data __attribute__ ((aligned (32)));
or
char data_array[512] __attribute__((aligned(32)));

For buffers that are declared in automatic (stack) storage, only up to a 16-byte alignment is
assured. Therefore, use dynamically allocated aligned static (global) storage instead.

6.3 Blue Gene/Q MPI extensions

This section describes extensions to the MPI library that is available on the Blue Gene/Q
system. It contains information about the following topics:

� Functions to dynamically configure the algorithms used by the MPI collectives while the
application is running, as described in 6.3.1, “Changing class-route usage at run time” on
page 72

� Functions to determine specific information about the hardware being used by the job
(such as torus coordinates for an MPI rank), as described in 6.3.2, “Determining hardware
properties” on page 73

6.3.1 Changing class-route usage at run time

The five-dimensional (5D) torus requires class routes for collective operations. There are only
13 class routes available (MPI_COMM_WORLD consumes one of them), so that a node can
only be in 13 communicators before hardware acceleration for collectives becomes
unavailable.

The Blue Gene/Q MPI implementation allows developers to enable or disable the use of a
class route by a given communicator. Used correctly, this feature can provide better
application performance:

� int MPIX_Comm_update(MPI_Comm comm, int optimize);

The value 0 for optimize disables class route use on the communicator, comm. Any other
value enables it. This call is collective. All nodes in the communicator must call this function.

The function returns the following values:

MPI_SUCCESS The property was successfully changed.

MPI_ERR_COMM The communicator is not valid.

Any other error code The optimization or deoptimization failed.
72 IBM System Blue Gene Solution: Blue Gene/Q Application Development

6.3.2 Determining hardware properties

Several MPIX functions can be used to determine the hardware properties of the current node
and job:

MPIX_Init_hw(MPIX_Hardware_t *hw)
This function takes an MPIX_Hardware_t structure, as defined in
mpix.h, and completes the fields. The hardware structure provides:
The physical rank irrespective of mapping
The size of the block irrespective of mapping
The number of processes per node
The core-thread ID of this process
The frequency of the processor clock
The size of the memory on the compute node
The number of torus dimensions
The size of each torus dimension
The torus coordinates of this process
A wrap-around link attribute for each torus dimension

int MPIX_Torus_ndims(int *numdimensions)
This function returns the dimensionality of the torus (typically five on
the Blue Gene/Q system).

int MPIX_Rank2torus(int rank, int *coords)
This function returns the torus physical coordinates in the coords array
for the MPI_COMM_WORLD rank passed in. The coords array needs
to be predeclared and preallocated. It has the size numdimensions+1
(typically six on the Blue Gene/Q system).

int MPIX_Torus2rank(int *coords, int *rank)
This function returns the MPI_COMM_WORLD rank for the passed in
torus coordinates. The coords array needs to be of size
numdimensions+1 (typically six on the Blue Gene/Q system).

6.4 MPI functions

This section lists several references that provide a comprehensive description of the MPI
functions.

Appendix A in Parallel Programming in C with MPI and OpenMP, by Michael J. Quinn,
describes all of the MPI functions, as defined in the MPI-1 standard. This reference also
provides additional information and describes when to use each function.

In addition, you can find information about the MPI standard on the Message Passing
Interface (MPI) standard website at:

http://www.mcs.anl.gov/research/projects/mpi/

A comprehensive list of the MPI functions is available on the MPI Routines web page at:

http://www.mcs.anl.gov/research/projects/mpi/www/www3/

The MPI Routines page includes MPI calls for C and Fortran. For more information, see the
following books about MPI and MPI-2:

� MPI: The Complete Reference, 2nd Edition, Volume 1, by Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker, and Jack Dongarra
Chapter 6. Parallel paradigms 73

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/www/www3/

� MPI: The Complete Reference, Volume 2: The MPI-2 Extensions, by William Gropp,
Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
and Marc Snir

Teaching MPI is beyond the scope of this book. See the following web page for tutorials and
extensive information about MPI:

http://www.mcs.anl.gov/research/projects/mpi/learning.html

6.5 Compiling MPI programs on the Blue Gene/Q system

The Blue Gene/Q software provides scripts to compile and link MPI programs. These scripts
simplify building MPI programs by setting the include paths for the compiler and linking in the
libraries that implement MPICH2, the common Blue Gene/Q message layer interface (PAMI),
and the low-level hardware interfaces (MUSPI) that are required by Blue Gene/Q MPI
programs.

There are six versions of the libraries and the scripts:

gcc A version of the libraries that was compiled with the GNU Compiler
Collection (GCC) and uses fine-grained locking in MPICH. These
libraries also have error checking and assertions enabled.

gcc.legacy A version of the libraries that was compiled with the GNU Compiler
Collection and uses a coarse-grain lock in MPICH. These libraries also
have error checking and assertions enabled and can provide slightly
better latency in single-thread codes, such as those that do not call
MPI_Init_thread(... MPI_THREAD_MULTIPLE ...). Use one of the gcc
libraries for initial application porting work.

xl A version of the libraries with MPICH compiled with the XL compilers
and PAMI compiled with the GNU compilers. This version has the
fine-grained MPICH locking and all error checking and asserts
enabled. These libraries can provide a performance improvement over
the gcc libraries.

xl.legacy A version of the libraries with MPICH compiled with the XL compilers
and PAMI compiled with the GNU compilers. This version has the
coarse-grained MPICH lock and all error checking and assertions are
enabled. These libraries can provide a performance improvement over
the gcc.legacy libraries for single-threaded applications.

xl.ndebug A version of the libraries with MPICH compiled with the XL compilers
and PAMI compiled with the GNU compilers. This version has the
fine-grained MPICH locking. Error checking and assertions are
disabled. This setting can provide a substantial performance
improvement when an application functions satisfactorily. Do not use
this library version for initial porting and application development.

xl.legacy.ndebug A version of the libraries with MPICH compiled with the XL compilers
and PAMI compiled with the GNU compilers. This version has the
coarse-grained MPICH lock. Error checking and asserts are disabled.
This can provide a substantial performance improvement when an
application functions satisfactorily. Do not use this library version for
porting and application development. This library version can provide
a performance improvement over the xl.ndebug library version for
single-threaded applications.
74 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://www.mcs.anl.gov/research/projects/mpi/learning.html

The various library versions are installed in /bgsys/drivers/ppcfloor/comm. There is a bin
directory in each path (for example, /bgsys/drivers/ppcfloor/comm/xl/bin).

The bin directory contains scripts that either use the GNU compilers to build the application
(mpicc, mpif77, and so on), or the XL compilers to build the application (mpixlf77, mpixlc) and
then link with the MPICH and support libraries.

The following scripts are provided to compile and link MPI programs:

mpicc C compiler

mpicxx C++ compiler

mpif77 Fortran 77 compiler

mpif90 Fortran 90 compiler

mpixlc IBM XL C compiler

mpixlc_r Thread-safe version of mpixlc

mpixlcxx IBM XL C++ compiler

mpixlcxx_r Thread-safe version of mpixlcxx

mpixlf2003 IBM XL Fortran 2003 compiler

mpixlf2003_r Thread-safe version of mpixlf2003

mpixlf77 IBM XL Fortran 77 compiler

mpixlf77_r Thread-safe version of mpixlf77

mpixlf90 IBM XL Fortran 90 compiler

mpixlf90_r Thread-safe version of mpixlf90

mpixlf95 IBM XL Fortran 95 compiler

mpixlf95_r Thread-safe version of mpixlf95

mpich2version FEN executable that prints MPICH2 version information

The following environment variables can be set to override the compilers used by the scripts:

MPICH_CC C compiler

MPICH_CXX C++ compiler

MPICH_FC Fortran 77 compiler

The IBM XL Fortran 90 compiler is incompatible with the Fortran 90 MPI bindings in the
MPICH library built with GCC. Therefore, the GNU versions of the mpixlf90 scripts cannot be
used with the Fortran 90 MPI bindings.

Example 6-9 shows MPI wrapper script examples.

Example 6-9 Compiling with the MPI wrapper scripts provided in the Blue Gene/Q driver

$ /bgsys/drivers/ppcfloor/comm/gcc/bin/mpicc -o hello hello.c
$ /bgsys/drivers/ppcfloor/comm/xl/bin/mpixlc -o hello hello.c
$ /bgsys/drivers/ppcfloor/comm/gcc/bin/mpif77 -o hello hello.f
$ /bgsys/drivers/ppcfloor/comm/xl/bin/mpixlC -o hello hello.C
Chapter 6. Parallel paradigms 75

Example 6-10 shows how to use the mpixlf77 script in a makefile.

Example 6-10 Using the mpixlf77 MPI script

XL = /bgsys/drivers/ppcfloor/comm/xl/bin/mpixlf77

EXE = fhello
OBJ = hello.o
SRC = hello.f
FLAGS = -O3

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $@ $^

$(OBJ): $(SRC)
 ${XL} $(FLAGS) -c $<

clean:
 $(RM) $(OBJ) $(EXE)

To build MPI programs for the Blue Gene/Q system, the compilers can be run directly instead
of using the provided MPI compiler scripts. When running the compilers directly, you must
explicitly include the required MPI libraries.

Example 6-11 shows a makefile that does not use the scripts. Replace (library name) with
one of the six library types (gcc, gcc.legacy, xl, xl.legacy, xl.ndebug, xl.legacy.ndebug). This
script assumes that the IBM XL compilers are installed in the default location opt/ibmcmp. If
the compilers are installed in another location, the path in the examples must be also
changed to match the alternative location.

Example 6-11 Makefile with explicit reference to libraries and include files

BGQ_FLOOR = /bgsys/drivers/ppcfloor
BGQ_IDIRS = -I$(BGQ_FLOOR)/comm/(library name)/include \
BGQ_LIBS = -L$(BGQ_FLOOR)/comm/(library name)/lib -lmpich -lmpl -lopa \

-L/bgsys/drivers/ppcfloor/comm/sys/lib -lpami \
-L/bgsys/drivers/ppcfloor/spi/lib -lSPI_cnk -lrt -lstdc++ -lpthread

XL = /opt/ibmcmp/xlf/bg/14.1/bin/bgxlf

EXE = fhello
OBJ = hello.o
SRC = hello.f
FLAGS = -O3 $(BGQ_IDIRS)

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $@ $^ $(BGQ_LIBS)

$(OBJ): $(SRC)
 ${XL} $(FLAGS) -c $<

clean:
 $(RM) $(OBJ) $(EXE)
76 IBM System Blue Gene Solution: Blue Gene/Q Application Development

6.6 OpenMP

The OpenMP API is supported on the Blue Gene/Q system for shared-memory parallel
programming in C/C++ and Fortran. This API is jointly defined by a group of hardware and
software vendors and evolved as a standard for shared-memory parallel programming.

OpenMP comprises a collection of compiler directives and a library of functions that can be
used in OpenMP programs. This combination provides a simple interface for developing
parallel programs on shared-memory architectures. Multithreading is enabled on the Blue
Gene/Q system. The OpenMP API provides access to data parallelism and functional
parallelism.

For additional information, see the official OpenMP website at:

http://www.openmp.org/

6.6.1 OpenMP implementation for Blue Gene/Q

The Blue Gene/Q system supports shared-memory parallelism on single nodes. OpenMP is
supported in the IBM extensible language (XL) compilers and the GNU GCC compilers.
When using either the XL compilers or the GNU compilers, OpenMP can be used with MPI.

The IBM XL compilers provide support for OpenMP v3.1. The GNU compilers provide support
for OpenMP v3.0.

See the corresponding compiler documentation for information about how to use OpenMP.

6.7 Multiple Program, Multiple Data

Multiple program, multiple data (MPMD) jobs are jobs for which a different executable and
arguments can be supplied for a single job. All tasks of the job share the same
MPICOMMWORLD communicator and can share data between different executables using
the torus.

To enable MPMD support, specify a mapping file with the runjob --mapping option. Within the
mapping file, there are keywords that control MPMD behavior on the nodes.

#mpmdbegin {ranks}
#mpmdcmd <executable> <arg0> <arg1> ... <argn>
#mpmdend

{ranks} specifies the MPI rank numbers. Multiple MPI ranks can be specified with a comma,
for example:

#mpmdbegin 3,6,9

It is also possible to specify ranges of MPI ranks using a dash, for example:

#mpmdbegin 0-15

Additionally, ranges can be specified with a stride 'x' option, for example:

#mpmdbegin 0-15x2

Ranks 0, 2, 4, 6, 8, 10, 12, and 14 are included.
Chapter 6. Parallel paradigms 77

http://www.openmp.org/

Sets and ranges can also be mixed:

#mpmdbegin 0,2,5-15

Avoid oversubscribing a rank to multiple programs.

There is also a shortcut option for specifying a calculated mapping without specifying each
rank in the map file. To use that option:

#mapping ABCDET

All permutations of ABCDET are permitted.

There is also a restriction on MPMD ranks. All ranks in the same node must have the same
program.
78 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 7. Developing applications with
Blue Gene/Q compilers

Applications to be run on the Blue Gene/Q system must be compiled and linked with a
compiler that targets the Blue Gene/Q environment. Because compilation occurs on the front
end node and not on the Blue Gene/Q system, these compilers are cross compilers.

This chapter describes the considerations for developing, compiling, and optimizing C/C++
and Fortran applications for the IBM Blue Gene/Q PowerPC A2 processor and the
quad-processing extension (QPX) in the PowerPC AS v2 floating-point unit. This chapter
contains information about the following topics:

� Programming environment overview
� Compilers for the Blue Gene/Q system
� Compiling and linking applications on the Blue Gene/Q system
� Compiler options specific to the Blue Gene/Q system
� Support for pthreads and OpenMP
� Creating libraries on the Blue Gene/Q system
� Running dynamically linked applications on the Blue Gene/Q system
� Mathematical Acceleration Subsystem Libraries
� Engineering and Scientific Subroutine Libraries
� Cross-compilation on the Blue Gene/Q system
� Python support
� Using the QPX floating-point unit

7

© Copyright IBM Corp. 2013. All rights reserved. 79

7.1 Programming environment overview

Figure 2-1 on page 10 shows the system calls that the CNK manages, including forwarding
I/O to the I/O node kernel. Figure 6-1 on page 66 shows a summary of the messaging
software stack that supports the execution of Blue Gene/Q applications.

7.2 Compilers for the Blue Gene/Q system

The Blue Gene/Q system includes support for the IBM extensible library (XL) family of
optimizing compilers. It also supports the GNU Compiler Collection, a Python interpreter, and
the GNU toolchain tools.

7.2.1 IBM XL compilers

The Blue Gene/Q system includes the IBM XL compilers. These compilers can be used to
develop C, C++, and Fortran applications for the IBM Blue Gene/Q system. This family
comprises the following products, which are referred to in this chapter as the IBM XL
compilers for Blue Gene/Q:

� XL C/C++ Advanced Edition V12.1 for Blue Gene/Q
� XL Fortran Advanced Edition V14.1 for Blue Gene/Q

The information presented in this chapter is an overview of the features that are available for
use with the Blue Gene/Q system. For complete documentation about these compilers, see
the information at the following websites:

� XL C/C++

http://www.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran

http://www.ibm.com/software/awdtools/fortran/xlfortran/library/

Documentation is also typically included as PDF files in the installation directories under
/opt/ibmcmp.

The default installation directory for the IBM XL compilers is /opt/ibmcmp. The system
administrator can specify another installation directory. See the compiler documentation for
more information about changing the default installation directories for the XL compilers.

If an alternative installation location is used for the XL compiler, create a link that refers to the
alternative installation location in the /opt/ibmcmp directory, for example:

ln -s /bgsys/xlcompilers/latest /opt/ibmcmp

When this link is created, you can run the compiler with /opt/ibmcmp, but use the compilers
that are installed in the alternative locations.

The examples in this chapter are based on the default installation location of /opt/ibmcmp. If
another installation location is used, the path in the examples must be also changed to match
the alternative location.
80 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://www.ibm.com/software/awdtools/xlcpp/library/
http://www.ibm.com/software/awdtools/fortran/xlfortran/library/

7.2.2 GNU Compiler Collection

The standard GNU Compiler Collection V4.4.6 for C, C++, and Fortran is supported on the
Blue Gene/Q system. The versions of the toolchain components are:

� gcc 4.4.6
� binutils 2.21.1
� glibc 2.12.2
� gdb 7.2

For more information about the toolchain compilers, see the man pages or the GNU website:

http://gcc.gnu.org

7.2.3 Python interpreter

You can install patches to build a version of Python that runs on the Blue Gene/Q system. See
Section 7.11, “Python support” on page 95 for more information.

7.2.4 Toolchain tools

The GNU toolchain provides a variety of tools. These tools are in the
/bgsys/drivers/ppcfloor/gnu-linux/bin directory and have the prefix
powerpc64-bgq-linux-. Some tools have function added for the Blue Gene/Q system:

gdb Contains support for remote debugging, the display of the Blue
Gene/Q instruction set, and the display of QPX register contents.

objdump Disassembles instructions on the Blue Gene/Q system.

readelf Recognizes and displays the note section for the Blue Gene/Q system.

nm Recognizes the vector4double data type for the XL compiler

7.3 Compiling and linking applications on the Blue Gene/Q
system

The following Blue Gene/Q GNU compilers are stored at
/bgsys/drivers/ppcfloor/gnu-linux/bin:

� powerpc64-bgq-linux-gcc
� powerpc64-bgq-linux-gfortran
� powerpc64-bgq-linux-g++

The names of the XL compilers for Blue Gene/Q are listed in Table 7-1. There are multiple
variations for each language (C, C++, Fortran), depending on the language standard to be
used. Use the thread-safe version of the compiler (the name ends in _r) to compile programs
that run threads.

Table 7-1 Scripts available in the bin directory for compiling and linking

Language Script name or names

C bgc89, bgc99, bgcc, bgxlc bgc89_r, bgc99_r bgcc_r, bgxlc_r

C++ bgxlc++, bgxlc++_r, bgxlC, bgxlC_r
Chapter 7. Developing applications with Blue Gene/Q compilers 81

http://gcc.gnu.org

Example 7-1 shows how to compile and link a simple program.

Example 7-1 Linking and compiling a simple program

Compile and link a program with the toolchain:
$ /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -o hello hello.c
Compile and link a program with the XL C compiler:
$ /opt/ibmcmp/vacpp/bg/12.1/bin/bgxlc -o hello hello.c
Compile and link a program with the XL Fortran compiler:
/opt/ibmcmp/xlf/bg/14.1/bin/bgxlf90_r -o hello hello.f
Compile and link a program with the toolchain Fortran compiler:
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gfortran -o hello hello.f

7.4 Compiler options specific to the Blue Gene/Q system

Both the GNU compilers and the XL compilers have many options to configure compilation
and linking. See the compiler documentation links for a complete list of options and
descriptions. The options in this section are provided with the Blue Gene/Q versions of the
compilers and are specific to programs that are compiled for the Blue Gene/Q system.

7.4.1 Options for the Blue Gene/Q system

This section presents the options for the Blue Gene/Q system.

GNU compilers
Specify the following option to use dynamic linking for the program:

-dynamic For performance reasons, the compilers for the Blue Gene/Q system
default to static linking. If this option is not specified, static linking is
used.

XL compilers
This section provides the XL compilers.

Default options
The following options are set when the bgxl compiler invocation scripts in the bin directory of
the installation folder are used. These options are the default settings:

-qarch=qp -qtune=qpThese options identify that the code is targeted for Blue Gene/Q.

-q64 The Blue Gene/Q compilers generate only 64-bit code.

-qsimd=auto Use this option to indicate whether the compiler transforms code into a
form that can use the QPX floating-point instruction set. This process
is sometimes referred to as simdizing the code. The -qsimd option
defaults to auto. To disable the auto simdization of code, use the
-qsimd=noauto option.

Fortran bgf2003, bgf95, bgxlf2003, bgxlf90_r, bgxlf_r, bgf77, bgfort77, bgxlf2003_r,
bgxlf95, bgf90, bgxlf, bgxlf90, bgxlf95_r

Language Script name or names
82 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Additional Blue Gene/Q options
These options are specific to the Blue Gene/Q system. These options are not set by default:

-qnostaticlink Use this option to specify that the executable program is generated
with dynamic linking. For all Blue Gene/Q XL compilers, the default
linking mode is static.

-qmkshrobj Use this option to generate shared libraries when linking with the Blue
Gene/Q XL compilers.

-qflttrap=qpxstore Use this option to generate code that permits floating-point exceptions
to occur when the QPX floating-point unit is used. The QPX
floating-point unit generates a limited set of floating-point exceptions.
Only the QPX store instruction can generate a floating-point exception
for not a number (NAN) or infinity (INF). This option is not enabled by
default.

-qtm Use this option to process the transactional memory #pragmas in the
program. When source code contains transactional memory #pragmas
and is compiled with the -qtm option, the compiler generates code that
uses the transactional memory on the Blue Gene/Q system. The
#pragmas to identify the transactional code must be used in addition to
the option -qtm for this feature to be enabled. Transactional memory is
only useful when threads are present. A thread-safe compiler (that is,
a compiler with _r in its name) must be used with this option. For more
information about the syntax and use of transactional memory, see the
links to the compiler documentation.

-qsmp=speculative Use this option to process the speculative thread #pragmas in the
code. Both speculative thread constructs and this option are required
to generate speculative threads. Use this option with a thread-safe
compiler (that is a compiler with _r in its name). For more information
about the syntax and use of speculative threads, see the links to the
compiler documentation.

7.4.2 Unsupported compiler options

The following compiler options are not supported by the Blue Gene/Q compilers.

GNU compilers:

-m32 The Blue Gene/Q system supports only 64-bit architecture. The -m32
option is not supported.

XL compilers:

-q32 The Blue Gene/Q system uses a 64-bit architecture. The 32-bit mode
is not supported.

-qaltivec The A2 processor does not support vector single instruction, multiple
data (VMX) instructions.

7.5 Support for pthreads and OpenMP

Programs that use threads can be built with the Blue Gene/Q compilers and run on the Blue
Gene/Q system. Threads on Blue Gene/Q system are implemented as pthreads that are
defined by glibc in the Blue Gene/Q toolchain.
Chapter 7. Developing applications with Blue Gene/Q compilers 83

OpenMP can also be used to create threads, which are implemented by the OpenMP
run-time environment as pthreads. For more information about the threading model for the
Blue Gene/Q system, see 3.9, “Threading overview” on page 17. For more information about
the GNU OpenMP environment, which is also referred to as GOMP, see the GNU website at:
http://gcc.gnu.org/projects/gomp/.

The IBM XL compilers for the Blue Gene/Q system support the OpenMP 3.1 standard. See
the XL compiler documentation for information about the options that are required to enable
OpenMP. This section also contains information about the source code changes for the
OpenMP run time environment.

The GNU toolchain for Blue Gene/Q contains support for OpenMP 3.0.

7.5.1 Thread stack size for the Blue Gene/Q system

The thread stack size depends on the system configuration:

Minimum thread stack size
The minimum thread stack size is determined by glibc. In glibc 2.10,
the value for PTHREAD_STACK_MIN is defined as 128 KB for
PowerPC64. The smallest allowable stack in glibc 2.12.2 is also
128 KB. If the stack size is smaller than the minimum value, the
pthread_create() function returns an error.

Default thread stack size
The default thread stack size on the Blue Gene/Q system is 4 MB.

Maximum thread stack size
The maximum size for a thread stack in a program depends on the
amount of space that is available to allocate for stack space. There are
many factors that can affect stack space. These factors include how
much heap space is available to the process, how much heap space is
already used, how many threads are being created, how much thread
local storage is being used, and how many processes are running on
the node. If memory errors occur when the pthread_create() function
is called, there is probably not enough space to create the stack for the
new thread. To set the thread stack size when creating a thread with
pthread_create, use the pthread_setstacksize function as shown in
Example 7-2.

Example 7-2 Using the pthread_setstacksize option to set the thread stack size

pthread_attr_t attr;
 pthread_t thd;
 int rc;
 pthread_attr_init(&attr);
 pthread_setstacksize(&attr, 8000000);
 rc = pthread_create(&thd, &attr, p, 0);

To set the thread stack size when using OpenMP threads, use the OMP_STACKSIZE
environment variable. For example, you can enter the following command to set the OpenMP
stack to 8 MB:

export OMP_STACKSIZE=8M
84 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://gcc.gnu.org/projects/gomp/

7.6 Creating libraries on the Blue Gene/Q system

On the Blue Gene/Q system, two types of libraries can be created:

� Static libraries
� Shared (dynamically loaded) libraries

When a program is statically linked, the required code from the static libraries is linked into
the program. Example 7-3 illustrates how to create a static library on the Blue Gene/Q system
with the XL family of compilers.

Example 7-3 Static library creation using the XL compilers

Compile with the XL compiler
/opt/ibmcmp/vac/bg/12.1/bin/bgxlc -c pi.c
/opt/ibmcmp/vac/bg/12.1/bin/bgxlc -c main.c
#
Create the library
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-ar rcs libpi.a pi.o
#
Create the executable program
/opt/ibmcmp/vac/bg/12.1/bin/bgxlc -o pi main.o -L. -lpi

Example 7-4 shows the same procedure with the GNU collection of compilers.

Example 7-4 Static library creation using the GNU compilers

Compile with the GNU compiler
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -c pi.c
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -c main.c
#
Create the library
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-ar rcs libpi.a pi.o
#
Create the executable program
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -o pi main.o -L. -lpi

Shared libraries are loaded at execution time.

Use the -qnostaticlink option with the XL C and C++ compilers to build a dynamic binary. The
static libgcc.a is linked in by default. To use the shared version of the libgcc library, also
specify -qnostaticlink=libgcc. For example, use /opt/ibmcmp/vacpp/bg/12.1/bin/bgxlc -o hello
hello.c -qnostaticlink -qnostaticlink=libgcc.

Example 7-5 shows shared library creation with the XL compiler.

Example 7-5 Shared library creation using the XL compiler

Use XL to create shared library
/opt/ibmcmp/vac/bg/12,1/bin/bgxlc -qpic -c libpi.c
/opt/ibmcmp/vac/bg/12.1/bin/bgxlc -qpic -c main.c
#
Create the shared library
/opt/ibmcmp/vac/bg/12.1/bin/bgxlc -qmkshrobj -Wl,-soname, libpi.so.0 -o libpi.so.0.0 libpi.o
#
Set up the soname
ln -sf libpi.so.0.0 libpi.so.0
Chapter 7. Developing applications with Blue Gene/Q compilers 85

#
Create a linker name
ln -sf libpi.so.0 libpi.so
#
Create the executable program
/opt/ibmcmp/vac/bg/12.1/bin/bgxlc -o pi main.o -L. -lpi -qnostaticlink -qnostaticlink=libgcc

Example 7-6 illustrates the same procedure with the GNU collection of compilers.

Example 7-6 Shared library creation using the GNU compiler

Compile with the GNU compiler
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -fPIC -c libpi.c
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -fPIC -c main.c
#
Create shared library
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -shared \
 -Wl,-soname,libpi.so.0 -o libpi.so.0.0 libpi.o -lc
#
Set up the soname
ln -sf libpi.so.0.0 libpi.so.0
#
Create a linker name
ln -sf libpi.so.0 libpi.so
#
Create the executable program
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -o pi main.o -L. -lpi -dynamic

The -qnostaticlink and -qmkshrobj options can also be used in a similar manner with the XL
Fortran compilers.

7.7 Running dynamically linked applications on the Blue
Gene/Q system

Unlike most other platforms, the compilers that generate code to run on the Blue Gene/Q
system use static linking instead of dynamic linking by default. The use of static linking
improves performance. If dynamic linking is used, there are some differences in how to build a
program to run on the Blue Gene/Q system.

7.7.1 Creating a program

If no linking options are specified when linking a program, a statically linked program is
generated. To use dynamic linking with GNU compilers, use the -dynamic option.
Example 7-7 shows how to link a program that is to run with dynamic linking.

Example 7-7 Linking a program to be run with dynamic linking

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -o hello hello.c -dynamic
/opt/ibmcmp/vacpp/bg/12.1/bin/bgxlc -o hello hello.c -qnostaticlink
86 IBM System Blue Gene Solution: Blue Gene/Q Application Development

A program that is created with a compiler that targets the Blue Gene/Q system identifies the
path to the dynamic linker as
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux/lib/ld64.so.1. This
directory is available on the front end nodes and the I/O node. The readelf tool displays this
information. For more information, see 7.7.5, “Tools for dynamic linking” on page 88.

7.7.2 Creating a shared library

When the GNU compilers are used, a shared library for the Blue Gene/Q system is created.
This library is the same library as for Linux on IBM Power®. Compile the code that is included
in a shared library with the pic option to identify that it contains position independent code.
Example 7-8 provides syntax for creating a shared library with GNU compilers.

Example 7-8 Creating a shared library with GNU compilers

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -c util.c -fpic
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux/gcc -o libtest.so util.o -shared

When the XL compilers are used, a shared library for the Blue Gene/Q system is created with
the -qmkshrobj option. The -qmkshrobj option is supported for C, C++, and Fortran.
Example 7-9 provides syntax for creating a shared library with XL compilers.

Example 7-9 Creating a shared library with XL compilers

/opt/ibmcmp/vacpp/bg/12.1/bin/bgxlc -c util.o -qpic
/opt/ibmcmp/vacpp/bg/12.1/bin/bgxlc -o libtest.so util.o -qmkshrobj

7.7.3 Running a Blue Gene/Q dynamically linked program on a front end node

Some dynamically linked programs that are built for the Blue Gene/Q system run on the front
end node because it is a PowerPC64 processor. This configuration is not supported.

To run programs in this configuration, explicitly invoke the dynamic linker, and use the Blue
Gene/Q program as an argument.

Example 7-10 Invoking the dynamic linker

/bgsys/drivers/ppcfloor/gnu-linux/powerpc64-bgq-linux/lib/ld64.so.1 ./hello

7.7.4 Running a dynamically linked program on the Blue Gene/Q system

Running a dynamically linked program on the Blue Gene/Q system is similar to the way a
statically linked program is run. When dynamically linked programs are run on the Blue
Gene/Q system, the paths to those libraries must be known to the Blue Gene/Q dynamic
linker, or the program fails to run. As described in 7.7.1, “Creating a program” on page 86, the
information about the path to the Blue Gene/Q dynamic linker is embedded in the program
when it is linked. By default, the dynamic linker searches the directories that are expected to
contain shared libraries for use with Blue Gene/Q system. These locations include the
directories for the Blue Gene/Q toolchain shared libraries and the Python shared library if the
Python library is installed. The linker also searches for Message Passing Interface (MPI) or

Important: Do not use the ld command to explicitly link a program. Use the Blue Gene/Q
compilers (GNU and XL) to run the link command. This method ensures that the compiler
links in dependent libraries that might be missed if the ld command is used alone.
Chapter 7. Developing applications with Blue Gene/Q compilers 87

Parallel Active Messaging Interface (PAMI) shared libraries for the Blue Gene/Q driver. The
driver is in the /usr/lib64/bgq/ directory on the I/O node.

The Blue Gene/Q dynamic linker follows the same search conventions as the native GNU
dynamic linker. At program load time, the dynamic linker attempts to load all of the dependent
libraries in the program that are identified as NEEDED in the dynamic section of the program
Executable and Linkable Format (ELF) file, as displayed by the readelf tool. The search path
order for a dynamically linked program on the Blue Gene/Q compute node contains the
following locations:

� The path in the DT_RPATH dynamic section of the program, if it exists

� The path identified by the LD_LIBRARY_PATH environment variable that is specified on
the runjob command

� The path in the DT_RUNPATH dynamic section of the program, if it exists

� The information provided in /etc/ld.so.bgq.cache file on the I/O node

� The default paths searched by the Blue Gene/Q dynamic linker, which include /lib64/bgq
and /usr/lib64/bgq on the I/O node

� The default native paths /lib64 and /usr/lib64

The NEEDED, DT_RPATH, and DT_RUNPATH information for a program can be viewed using
the readelf utility. For more information, see Section 7.7.5, “Tools for dynamic linking” on
page 88.

7.7.5 Tools for dynamic linking

The tools that are described in this section provide information that can be used to determine
how programs or shared libraries are built. It also provides information about the search paths
that are used to find shared libraries.

The readelf tool
The readelf tool is in the toolchain. This tool provides information about the content of the
dynamically linked program. It displays the path to the Blue Gene/Q dynamic linker, the set of
shared library dependencies in the program (that are identified as NEEDED in the dynamic
section of the program ELF file), and the DT_RPATH and DT_RUNPATH information.
Figure 7-1 on page 89 displays this information.
88 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Figure 7-1 Output from the readelf tool

The native readelf tool and the readelf tool in the Blue Gene/Q toolchain are similar. In some
cases, the Blue Gene/Q tool provides additional information.

The ldd tool
In most cases, the native ldd tool in the /usr/bin/ldd directory does not provide the correct
information for dynamically linked programs that are created to run on the Blue Gene/Q
system. Run the ldd tool in the Blue Gene/Q toolchain from a front end node to find the
shared library dependencies. Figure 7-2 shows output from the ldd tool when the Blue
Gene/Q toolchain is run from a front end node.

Figure 7-2 Output from the ldd tool on a front end node

Program Headers:
 Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align
 PHDR 0x0000000000000040 0x0000000001000040 0x0000000001000040
 0x0000000000000188 0x0000000000000188 R E 8
 INTERP 0x00000000000001c8 0x00000000010001c8 0x00000000010001c8
 0x0000000000000015 0x0000000000000015 R 1
 [Requesting program interpreter:
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux/lib/ld64.so.1]
 LOAD 0x0000000000000000 0x0000000001000000 0x0000000001000000
 0x0000000000000824 0x0000000000000824 R E 10000
 LOAD 0x0000000000010000 0x0000000001100000 0x0000000001100000
 0x0000000000000300 0x0000000000000370 RW 10000
 DYNAMIC 0x0000000000010028 0x0000000001100028 0x0000000001100028
 0x0000000000000170 0x0000000000000170 RW 8
 NOTE 0x00000000000001e0 0x00000000010001e0 0x00000000010001e0
 0x0000000000000040 0x0000000000000040 R 4
 GNU_EH_FRAME 0x00000000000007d8 0x00000000010007d8 0x00000000010007d8
 0x0000000000000014 0x0000000000000014 R 4
...

Dynamic section at offset 0x10028 contains 19 entries:
 Tag Type Name/Value
 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
 0x000000000000000f (RPATH) Library rpath: [/bgusr/boger]

/bgsys/drivers/ppcfloor/gnu-linux/powerpc64-bgq-linux/bin/ldd ./hello
linux-vdso64.so.1 => (0x00000fff9bb80000)
libc.so.6 => /bgsys/drivers/ppcfloor/gnu-linux/powerpc64-bgq-linux/lib/libc.so.6
(0x00000fff9b940000)
/bgsys/drivers/ppcfloor/gnu-linux/powerpc64-bgq-linux/lib/ld64.so.1 (0x0000000040450000)
Chapter 7. Developing applications with Blue Gene/Q compilers 89

Figure 7-3 shows output from the Blue Gene/Q ldd tool when it is run from a front end node.

Figure 7-3 Output from the Blue Gene/Q ldd tool

The Blue Gene/Q toolchain shared libraries for a front end node are in the directories for the
toolchain in /bgsys.

To run the equivalent of the ldd tool on the compute node, use the runjob command as shown
in Figure 7-4. Long lines are separated with the backslash (\) character.

Figure 7-4 Running ldd on the compute node

LD_DEBUG tracing
To trace the search paths that are used by the dynamic linker, use the LD_DEBUG
environment variable. The Blue Gene/Q variable has the same values as the Linux on Power
variable. To see all of the supported values for the LD_DEBUG variable, run tracing with the
LD_DEBUG=help: option. See Example 7-11.

Example 7-11 LD_DEBUG=help tracing

runjob --block R00-M0-N01 --corner R00-M0-N01-J00 \
 --shape 1x1x1x1x1 --raise --cwd /bgusr/boger/bgq/c --envs LD_DEBUG=help --exe
./hello
Valid options for the LD_DEBUG environment variable are:

libs display library search paths
reloc display relocation processing
files display progress for input file
symbols display symbol table processing
bindings display information about symbol binding
versions display version dependencies
dbgevents display debug events
all all previous options combined
statistics display relocation statistics
unused determined unused DSOs
help display this help message and exit

To direct the debugging output into a file instead of standard output
a filename can be specified using the LD_DEBUG_OUTPUT environment variable.

To see information about the directories that were searched to find a particular shared library,
use the LD_DEBUG=libs: option. See Example 7-12 on page 91.

/bgsys/drivers/ppcfloor/gnu-linux/powerpc64-bgq-linux/bin/ldd ./hello
linux-vdso64.so.1 => (0x00000fffa2720000)
libc.so.6 => /lib64/bgq/libc.so.6 (0x00000fffa24e0000)
/bgsys/drivers/ppcfloor/gnu-linux/powerpc64-bgq-linux/lib/ld64.so.1 (0x0000000040450000)

runjob --block R00-M0-N01 --corner R00-M0-N01-J00 --shape 1x1x1x1x1 \
 --cwd /bgusr/boger/bgq/c --envs LD_TRACE_LOADED_OBJECTS=1 --exe hello
 libc.so.6 => /lib64/bgq/libc.so.6 (0x0000001e01503000)
 /bgsys/drivers/ppcfloor/gnu-linux/powerpc64-bgq-linux/lib/ld64.so.1 => ld
(0x0000003001000000)
90 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Example 7-12 LD_DEBUG=libs debugging

runjob --block R00-M0-N01 --corner R00-M0-N01-J00 --shape 1x1x1x1x1 --raise \
 --cwd /bgusr/boger/bgq/c --envs LD_DEBUG=libs --exe hello
 1: find library=libc.so.6 [0]; searching
 1: search path=/bgusr/boger/tls:/bgusr/boger (RPATH from file hello)
 1: trying file=/bgusr/boger/tls/libc.so.6
 1: trying file=/bgusr/boger/libc.so.6
 1: search cache=/etc/ld.so.bgq.cache
 1: trying file=/lib64/bgq/libc.so.6
 1:
 1:
 1: calling init: /lib64/bgq/libc.so.6
 1:
 1:
 1: initialize program: hello
 1:
 1:
 1: transferring control: hello
 1:
Hello from pid: 1 start: 0x1
 1:
 1: calling fini: hello [0]
 1:
 1:
 1: calling fini: /lib64/bgq/libc.so.6 [0]
 1:

To display detailed information about the libraries that were loaded, including the start
address and size, use the LD_DEBUG=files: option. See Example 7-13.

Example 7-13 LD_DEBUG=files debugging

runjob --block R00-M0-N01 --corner R00-M0-N01-J00 --shape 1x1x1x1x1 --raise \
 --cwd /bgusr/boger/bgq/c --envs LD_DEBUG=files --exe hello
 1: file=hello [0]; generating link map
 1: dynamic: 0x0000000001100028 base: 0x0000000000000000 size:
0x0000000000100380
 1: entry: 0x00000000011001b8 phdr: 0x0000000001000040 phnum: 7
 1:
 1:
 1: file=libc.so.6 [0]; needed by hello [0]
 1: file=libc.so.6 [0]; generating link map
 1: dynamic: 0x0000001e01719e10 base: 0x0000001e01503000 size:
0x00000000002320f8
 1: entry: 0x0000001e0171ad78 phdr: 0x0000001e01503040 phnum: 10
 1:
 1:
 1: calling init: /lib64/bgq/libc.so.6
 1:
 1:
 1: initialize program: hello
 1:
 1:
 1: transferring control: hello
 1:
Hello from pid: 1 start: 0x1
Chapter 7. Developing applications with Blue Gene/Q compilers 91

 1:
 1: calling fini: hello [0]
 1:
 1:
 1: calling fini: /lib64/bgq/libc.so.6 [0]
 1:

When using LD_DEBUG on a multi-node block, use the --label option on the runjob
command to display which output corresponds to which node.

7.8 Mathematical Acceleration Subsystem Libraries

The Mathematical Acceleration Subsystem (MASS) libraries are tuned mathematical intrinsic
functions that are available in versions for the IBM AIX® and Linux operating systems,
including the Blue Gene/Q system. The MASS libraries provide improved performance over
the standard mathematical library routines, are thread-safe, and support compilations in C,
C++, and Fortran applications. For more information about MASS, see the Mathematical
Acceleration Subsystem webpage at:

http://www.ibm.com/software/awdtools/mass/index.html

The MASS libraries are included with the XL compiler collections for Blue Gene/Q, which are
installed in the /opt/ibmcmp path.

7.9 Engineering and Scientific Subroutine Libraries

The Engineering and Scientific Subroutine (ESSL) libraries for Linux on Power support the
Blue Gene/Q system. ESSL provides over 150 math subroutines that are tuned for
performance on the Blue Gene/Q system and use ESSL version 5.1.1. For more information
about ESSL, see the Engineering Scientific Subroutine Library and Parallel ESSL website at:

http://www.ibm.com/systems/software/essl/index.html

7.10 Cross-compilation on the Blue Gene/Q system

An I/O node that is used as a front end node is a cross-compilation environment. When
building an application in a cross-compilation environment, build tools such as configure and
make might not provide the same results as when building natively. The results depend on
whether the tools and application are designed to build correctly in the variety of
cross-compilation environments that are available. Problems can occur because the
configure and make steps for the build of a tool or application compile and execute small code
snippets. These snippets identify characteristics of the target platform as part of the build
process. If these code snippets are compiled with a cross-compiler and executed on the build
machine instead of the target machine, the program might fail to execute or produce results
that do not reflect the target machine.

Important: When using IBM XL Fortran V14.1 for the Blue Gene/Q system, use ESSL
V5.1.1. If incompatible versions of ESSL and Fortran are selected, the RPM installation
fails with a dependency error message.
92 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://www.ibm.com/software/awdtools/mass/index.html
http://www.ibm.com/systems/software/essl/index.html

See the following sections for information about minimizing unexpected results:

� 7.10.1, “Configuring and building on an I/O node used as a front end node” on page 93
� 7.10.2, “Using implicit program launching from a front end node” on page 93

7.10.1 Configuring and building on an I/O node used as a front end node

An I/O node used as a front end node uses the same hardware as a compute node but runs
the Linux operating system instead of the Compute Node Kernel (CNK). If a program is coded
to use instructions that are specific to the A2 processor, it runs on an I/O node that is used as
a front end node. However, it does not work on a standard front end node. If an application is
configured on an I/O node that is used as a front end node, the program can be compiled and
run natively. This method prevents some problems that are related to cross-compiling. An I/O
node that is used as a front end node can be used to compile and run a set of small snippets.
This method often provides correct results. However, it does not work for the following types
of programs because CNK support is required:

� Transactional memory
� Speculative execution
� Blue Gene/Q MPI
� System calls that are supported on CNK but not on the Linux operating system
� System calls that provide different results on the CNK than on the Linux operating system

Example 7-14 shows how to compile and run a simple program on an I/O node that is used as
a front end node. In this case, the program is running directly on the I/O node.

Example 7-14 Compiling and running a simple program on an I/O node used as a front end node

$ /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -o hello hello.c
$./hello
Hello

7.10.2 Using implicit program launching from a front end node

The Blue Gene/Q toolchain includes implicit toolchain launching. Implicit launching means
invoking a Blue Gene/Q program as if it were being run natively on a front end node or an I/O
node used as a front end node. However, the runjob command for that program is run
implicitly based on the appropriate settings for some environment variables. This capability is
sometimes referred to as magic. To enable this function, the variables in Example 7-15 must
be set.

Example 7-15 Using implicit program launching

$ export BG_PGM_LAUNCHER=yes
$ export RUNJOB_BLOCK=R00-M0-N00

To run on a single node the following are also needed:

$ export RUNJOB_SHAPE=1x1x1x1x1
$ export RUNJOB_CORNER=R00-M0-N00-J00

Use the corresponding runjob environment variables to configure additional runjob
arguments for use on the implicit runjob execution. See the man pages for the runjob
command for a complete list and description of the runjob arguments. To disable implicit
program launching, unset the BG_PGM_LAUNCHER environment variable.
Chapter 7. Developing applications with Blue Gene/Q compilers 93

The runjob program does not include scheduling. If the program runs on a single node, you
must specify the node on the block.

Ensure that the small programs that are built during the configuration of the package are built
using the Blue Gene/Q compilers. Each configuration script is unique, so general instructions
for how to force the compiler cannot be provided. However, Example 7-16 works for many
packages.

Example 7-16 Example configuration script for Blue Gene/Q compilers

$./configure CC=/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc

You can verify that the program is being run remotely in this situation by compiling a program
with the Blue Gene/Q cross-compiler and executing the program on the front end node.

Example 7-17 shows a sample program.

Example 7-17 Program to verify the Blue Gene/Q implicit runjob invocation

#include <stdio.h>
#include <sys/utsname.h>

int main(int argc, char** argv)
{
 struct utsname uts;

 uname(&uts);
 printf("machine: %s\n", uts.machine);
 if (strcmp(uts.sysname, "Linux") == 0) {
 printf("We are on Linux!\n");
 }
 else {
 printf("We are NOT on Linux!\n");
 }
 return 0;
}

Example 7-18 shows how to compile and run this program.

Example 7-18 Compiling and running a program

Set up the environment variables:
$ export RUNJOB_BLOCK=R00-M0-N03
$ export RUNJOB_SHAPE=1x1x1x1x1
$ export RUNJOB_CORNER=R00-M0-N03-J12
$ export BG_PGM_LAUNCHER=yes

Compile the program:
$/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -o test-onbgq
test-onbgq.c

Run the program:
$./test-onbgq
machine: BGQ
We are NOT on Linux!
94 IBM System Blue Gene Solution: Blue Gene/Q Application Development

To verify that the program is launched with the runjob command on the compute node, set
the RUNJOB_VERBOSE environment variable to a value that ensures verbose output. For
more information, see the manual page for the runjob command.

The implicit launch support is compiled into Blue Gene/Q programs when the toolchain
compilers or the XL compilers are used. A program can be created without this support by
adding the Wl,-e_start_no_magic option when linking the program, as shown in
Example 7-19. When this option is used, the program does not use an implicit runjob
invocation. Instead, it runs the program natively on the front end node.

Example 7-19 Using implicit launch support

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc -o hello hello.c \
-Wl,-e_start_no_magic

7.11 Python support

The Python interpreter is often used for scientific applications. The Blue Gene/Q system
includes RPMs for a patched version of the Python interpreter. Python patches are available
for Python 2.6.7, 2.6.8, 2.7.3, 3.2.2, 3.2.3 and can be built with either the GNU or XL
compilers.

The default Python installation path is /bgsys/tools, but the interpreter can be installed in
another location. For example, you can build and install the Blue Gene/Q Python library into a
more efficient file system such as the IBM General Parallel File System (GPFS).

The Python interpreter is a dynamically linked application. See Example 7-6 on page 86 for
information about the Blue Gene/Q environment. For information about how to build the
Python interpreter, see the README file in the /bgsys/drivers/ppcfloor/tools/python
directory. To see the options for the build scripts, use the -h flag.

7.11.1 Using the Python interpreter in a cross-compiled environment

The Blue Gene/Q system is a cross-compiled environment. The Python interpreter for the
Blue Gene/Q system is built to run on Blue Gene/Q hardware. When building an application
that must use the Python interpreter as part of its build process on the front end node, use the
hostpython executable program in the installation directory. The executable programs in
/bgsys/tools/Python-2.6/bin/python and /bgsys/tools/Python-2.6/bin/hostpython are
identical, except for the default search paths and the location of the default dynamic linker.
Both programs generate the same Python compiled modules, but are used on different hosts
when compiling modules.

Table 7-2 summarizes the Python executable programs that exist on a front end node and
lists when they can be used.

Table 7-2 Python executable programs on a front end node

Path Host when used for
build

When used to run
Python

Targets

/usr/bin/python Front end node Front end node RHEL6.x on PPC64

/bgsys/tools/Python-2.6/bin/python I/O node used as a
front end node

Compute node, I/O node
used as a front end node

Blue Gene/Q hardware
Chapter 7. Developing applications with Blue Gene/Q compilers 95

Here are some examples of how to run the Python interpreter:

� To run the native Python interpreter on the front end node, but not run it on the Blue
Gene/Q system, use the native Python interpreter /usr/bin/python.

� To run the Python interpreter on the Blue Gene/Q compute node, use the runjob
command to run the Python interpreter /bgsys/tools/Python-2.6/bin/python.

� To compile a Python module as part of an application, where that module is later used to
run on the Blue Gene/Q system, run the hostpython executable program on the front end
node to compile the module.

� To run the Python interpreter on an I/O node used as front end node, use the Python
interpreter /bgsys/tools/Python-2.6/bin/python.

7.11.2 Running the Python interpreter on the Blue Gene/Q system

The Python interpreter can be built with either the XL or GNU compilers. When the Python
interpreter is built and installed on the front end node as part of the build, a tar file called
either bgqpython2.6.7gnu.tar.gz or bgqpython2.6.7XL.tar.gz is created and installed into
/bgsys/linux/bgfs on the service node. This tar file is used at I/O node boot time to extract
the files that are required at run time by the Python interpreter on the I/O node. At run time,
the Python shared library is installed from the I/O node into /usr/lib64/bgq and the Python
modules are installed into /bgfs/usr/lib64. The Python interpreter starts faster when the
shared libraries and Python modules are accessed from these locations.

Example 7-20 shows how to verify the locations of these files.

Example 7-20 Verifying the locations of Python files

On the service node or front end node:
ls /bgsys/linux/bgfs
bgqpython2.6.7gnu.tar.gz bgqpython3.2.tar.gz
On an I/O node used as a front end node
ls /bgfs/usr/lib64
libpython2.6.so.1.0 libpython3.2.so.1.0 python2.6 libpython2.6.so libpython3.2.so python3.2

� The Blue Gene/Q Python interpreter is built and installed on the front end node. As part of
this installation, the Python shared library and the python modules are packaged into a tar
file for use when booting the I/O block where the Python interpreter is run. When the I/O
block is booted, the Python shared library libpython2.6.so.x is in /lib64/bgq/ and the
Python modules are found in /bgfs/usr/lib64/.

� To compile applications, use the Python library that is on a front end node. In the Blue
Gene/Q Python installation, there are two Python binaries: python and hostpython. The
hostpython binary is designed to compile Python modules on the front end node. The
python binary is designed to be used when running the Python interpreter on the compute
node or an I/O node used as a front end node.

If the Python interpreter is installed in the default location in /bgsys/tools, the binaries are
stored in the following locations:

� /bgsys/tools/Python-2.6/bin/python hello.py

/bgsys/tools/Python-2.6/bin/hostpython Front end node Compute node, I/O node
used as a front end node

Blue Gene/Q hardware

Path Host when used for
build

When used to run
Python

Targets
96 IBM System Blue Gene Solution: Blue Gene/Q Application Development

� /bgsys/tools/Python-2.6/bin/hostpython hello.py

Example 7-21 shows how to run the Python interpreter on the Blue Gene/Q system.

Example 7-21 Running Python on the Blue Gene/Q system

$ runjob --block R00-M0-N00 : /bgsys/drivers/ppcfloor/gnu-linux/bin/python
testarray.py

For more information about the Python interpreter, see the following websites:

� Python Programming Language - Official Web site

http://www.python.org/

� The Python Tutorial

http://docs.python.org/tut/tut.html

� The Python Standard Library

http://docs.python.org/lib/lib.html

� pyMPI: Putting the py in MPI

http://pympi.sourceforge.net/

7.12 Using the QPX floating-point unit

The Blue Gene/Q hardware contains the quad-processing extension (QPX) to the IBM Power
Instruction Set Architecture. The computational model of the QPX architecture is a vector
single instruction, multiple data (SIMD) model with four execution slots and a register file that
contains 32 registers with 256 bits. Each of the 32 registers contains four elements of 64 bits.
Each of the execution slots operates on one vector element. These elements are referred to
as vector registers or quad registers.
Chapter 7. Developing applications with Blue Gene/Q compilers 97

http://www.python.org/
http://docs.python.org/tut/tut.html
http://docs.python.org/lib/lib.html
http://pympi.sourceforge.net/

Figure 7-5 shows the quad floating-point unit.

Figure 7-5 Blue Gene/Q quad floating-point unit

7.12.1 Using SIMD instructions in applications

There are two methods to use the QPX floating-point instruction set in your application when
using the IBM XL compiler for Blue Gene/Q:

� Using automatic simdization
� Using vector intrinsics functions or assembly code

Using automatic simdization with the IBM XL compiler
If your program is compiled with the XL compiler for Blue Gene/Q, simdization is enabled by
default. The compiler attempts to automatically transform code to efficiently use the QPX
floating-point instruction set. Simdization is enabled at all optimization levels, but more
aggressive and effective simdization occurs at higher optimization levels. Simdization is
controlled by the -qsimd option and can be disabled by using the -qsimd=noauto option.

The -qreport option provides information about what code is simdized and why simdization
does not occur.

For information about how to enable more simdization to occur, see the compiler
documentation links in Section 7.2.1, “IBM XL compilers” on page 80.

256

Load

64

Permute

MAD1 MAD2 MAD3MAD0

A2

RF RF RF RF
98 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Using the QPX vector intrinsics functions
Vector intrinsics functions are provided in the IBM XL compiler for Blue Gene/Q. The vector
intrinsics are built-in functions that map directly onto the QPX instruction set. You can use
these functions to tune code and enable the compiler to optimize the code as effectively as
possible.

For a description of the set of vector intrinsics, see the compiler documentation links in
Section 7.2.1, “IBM XL compilers” on page 80.

Example 7-22, Example 7-23, and Example 7-24 on page 100 show some common vector
intrinsics functions for Blue Gene/Q. These examples are not optimized for performance, and
are not comprehensive.

Example 7-22 shows basic quadword load, store, and arithmetic operations in C.

Example 7-22 C example with basic quadword load, store, and arithmetic operations

// vector version of y[i] = a*x[i] + y[i]
// where "x" and "y" are 32-byte aligned

#include <stdio.h>

#define NPTS 8
static double __attribute__((aligned(32))) x[NPTS], y[NPTS];

int main(int argc, char * argv[])
{
 int i;
 double a = 2.0;
 vector4double av, xv, yv;
 for (i=0; i<NPTS; i++) {
 x[i] = (double) i;
 y[i] = (double) i + 1;
 }
 if ((long) x & 0x1F) printf("x is not 32-byte aligned\n");
 if ((long) y & 0x1F) printf("y is not 32-byte aligned\n");
 av = vec_splats(a); // replicate "a" in four vector slots
 for (i=0; i<NPTS; i+=4) {
 xv = vec_ld(0L, &x[i]); // load four contiguous elements of x[]
 yv = vec_ld(0L, &y[i]); // load four contiguous elements of y[]
 yv = vec_madd(av, xv, yv); // yv = av*xv + yv
 vec_st(yv, 0L, &y[i]); // store four contiguous elements of y[]
 }
 for (i=0; i<NPTS; i++) printf("y[%d] = %.1lf\n", i, y[i]);
 return 0;
}

Example 7-23 shows basic quad-word load, store, and arithmetic operations in Fortran.

Example 7-23 Fortran example with basic quadword load, store, and arithmetic operations

program fmain
 implicit none
Chapter 7. Developing applications with Blue Gene/Q compilers 99

 integer i
 integer, parameter :: n = 8
 real(8) a, x(n), y(n)
!IBM* align(32, x, y)
 vector(real(8)) av, xv, yv
 a = 2.0d0
 do i = 1, n
 x(i) = dble(i-1)
 y(i) = dble(i)
 end do
 if (iand(loc(x), z'1F') .ne. 0) print *, 'x is not 32-byte aligned'
 if (iand(loc(y), z'1F') .ne. 0) print *, 'y is not 32-byte aligned'
 av = vec_splats(a) ! replicate "a" in four vector slots
 do i = 1, n, 4
 xv = vec_ld(0, x(i)) ! load four contiguous elements of x()
 yv = vec_ld(0, y(i)) ! load four contiguous elements of y()
 yv = vec_madd(av, xv, yv) ! yv = av*xv + yv
 call vec_st(yv, 0, y(i)) ! store four contiguous elements of y()
 end do
 do i = 1, n
 write(*,'(a,i1,a,f4.1)') 'y(', i, ') = ', y(i)
 end do
end

The basic quadword load intrinsic, vec_ld(), returns a vector variable with values taken from
the address argument rounded down to the nearest 32-byte boundary. Therefore, it is
important to know the alignment of the variable that is used. The vec_lda() signaling variant of
the vector load function generates an exception if the address is not 32-byte aligned. To
handle arbitrary alignment, determine the alignment and use appropriate shift or permute
instructions.

Alignment can be determined by a bitwise AND operation between the address and
0x1F = 31 (as a base-10 integer). Variables of type double can be on 8, 16, 24, or 32-byte
boundaries. The shift and permute intrinsics are designed to take two vectors as input and
return a vector with the required values, shifted or permuted from the input arguments. For
example, if you have a target address that has 16-byte alignment, you can get a vector with
four contiguous elements starting from that address by two vector loads followed by one shift.
Example 7-28 shows this process in C. The third argument to the vector shift function,
vec_sldw(), must be an integer constant, not an integer variable.

Similarly, the argument to the general permute control intrinsic, vec_gpci(), must be an integer
constant. It is convenient to use an octal constant for that purpose because there is a
one-to-one correspondence between the selected slots from the two vector arguments and
the digits of the constant in octal format. For example, to select slots 3, 2, 1, and 0, you can
code vec_gpci(03210) in C, or vec_gpci(o'3210') in Fortran. To maximize performance, use
32-byte aligned data.

Example 7-24 shows an example of vector and permute instructions in C.

Example 7-24 Vector shift and permute instructions in C

// example of vector shift and permute operations
100 IBM System Blue Gene Solution: Blue Gene/Q Application Development

#include <stdio.h>

#define NPTS 10
static double __attribute__((aligned(32))) x[NPTS];

int main(int argc, char * argv[])
{
 int i;
 vector4double v1, v2, xv, pctl;

 for (i=0; i<NPTS; i++) x[i] = (double) i;

 if (((long) &x[2] & 0x1F) != 16) printf("x[2] is not 16-byte aligned\n");

 v1 = vec_ld(0L, &x[2]); // v1 has values x[0-3]
 v2 = vec_ld(0L, &x[6]); // v2 has values x[4-7]

 xv = vec_sldw(v1, v2, 2); // xv has values x[2-5]
 for (i=0; i<4; i++) printf("xv[%d] = %.1lf\n", i, xv[i]);

 printf("\n");

 pctl = vec_gpci(05432); // xv has "x" values from slots 5,4,3,2
 xv = vec_perm(v1, v2, pctl);
 for (i=0; i<4; i++) printf("xv[%d] = %.1lf\n", i, xv[i]);

 return 0;
}

Chapter 7. Developing applications with Blue Gene/Q compilers 101

102 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Chapter 8. Running and debugging
applications

This chapter explains how to run and debug applications on the Blue Gene/Q system.

The following topics are covered:

� Running applications
� Debugging applications
� What to do when a job fails
� Debugging jobs

8

© Copyright IBM Corp. 2013. All rights reserved. 103

8.1 Running applications

Blue Gene/Q applications can be run in several ways. The most common method is to use a
job scheduler that supports the Blue Gene/Q system, such as the LoadLeveler scheduler. All
the Blue Gene/Q job schedulers use the runjob interface. The runjob interface is described in
the Blue Gene/Q System Administration (SG24-7869) Redbooks publication.

8.1.1 IBM LoadLeveler

The IBM LoadLeveler product is intended to manage both serial and parallel jobs over a
cluster of servers. This distributed environment consists of a pool of machines or servers,
often referred to as a LoadLeveler cluster. Machines in the pool can be of several types:
desktop workstations available for batch jobs (usually when not in use by their owner),
dedicated servers, and parallel machines.

The LoadLeveler scheduler allocates machine resources in the cluster to run jobs. The
scheduling of jobs depends on the availability of resources in the cluster and various rules,
which can be defined by the LoadLeveler administrator. A user submits a job using a job
command file. The LoadLeveler scheduler attempts to find resources within the cluster to
satisfy the requirements of the job. The LoadLeveler scheduler maximizes the efficiency of
the cluster by maximizing the use of resources, while minimizing the job turnaround time that
is experienced by users.

The LoadLeveler scheduler provides a rich set of functions for job scheduling and cluster
resource management. Some of the tasks that the LoadLeveler scheduler can perform
include:

� Choosing the next job to run
� Examining the job requirements
� Collecting available resources in the cluster
� Choosing the best machines for the job
� Dispatching the job to the selected machine
� Controlling running jobs
� Creating reservations and scheduling jobs to run in the reservations
� Job preemption to enable high-priority jobs to run immediately
� Fair-share scheduling to automatically balance resources among users or groups of users
� Co-scheduling to enable several jobs to be scheduled to run at the same time
� Multicluster support to allow several LoadLeveler clusters to work together to run user jobs

See the LoadLeveler documentation for information about setting up and using the
LoadLeveler scheduler with the Blue Gene/Q system. The documentation is available online
at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

8.2 Debugging applications

This section describes the debuggers that are supported by the Blue Gene/Q system.
104 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

8.2.1 General debugging architecture

Four pieces of code are involved when debugging applications on the Blue Gene/Q system:

� The Compute Node Kernel, which provides the low-level primitives that are required to
debug applications

� The Tool Control daemon, which runs on the I/O nodes and provides control and
communications to compute nodes

� A tool running on the I/O nodes, which is vendor-supplied code that interfaces with the
Tool Control daemon

� A tool running on a front end node, which is where the user performs work interactively

A debugger communicates to the compute node through the Code Development and Tools
Interface (CDTI) that is provided by the Tool Control daemon that runs on the I/O node. A
debugger typically comprises both a tool server program running on the I/O nodes and a tool
client program running on the front end node. Both the tool client and the tool server are
provided by the debugger vendor. The tool client usually communicates to the tool server with
the TCP/IP protocol. The tool server attaches to the Tool Control daemon using a connected
local socket. For more information about the CDTI interface, see the IBM System Blue Gene
Solution: Blue Gene/Q Code Development and Tools Interface, REDP-4659 IBM
Redpapers™ publication.

8.2.2 GNU Project Debugger

The GNU Project Debugger (GDB) is the primary debugger of the GNU project. You can learn
more about GDB on the web at the following address:

http://www.gnu.org/software/gdb/gdb.html

For more information about GDB, see the GDB web site:

http://www.gnu.org/software/gdb/documentation/

The Blue Gene/Q system includes support for running GDB with applications that run on
compute nodes. IBM provides a simple debug server called gdbserver. Each running instance
of GDB is associated with one process or rank.

When using GDB to debug a compute node process, the GDB tool must be run using the
remote target interface. This section refers to GDB as the GDB client.

Blue Gene/Q gdbserver implementation
The gdbserver program implements a subset of the GDB remote protocol specification.
Therefore, advanced features that might be available in other implementations are not
available in this implementation.

Each instance of a GDB client can connect to and debug one process. To debug multiple
processes at the same time, run multiple GDB tools at the same time. A maximum of four
GDB tools can be run on one job.

The toolchain patches provide a set of patches to use to build against the supported version
of the GDB tool. When the Blue Gene/Q toolchain is built, the GDB tool is in the toolchain
installation directories.

To debug an application, the debug server must be started and running before you attempt to
debug. Use an option on the runjob command or run the start_tool command with
Chapter 8. Running and debugging applications 105

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/documentation/

appropriate arguments. For more information, see the examples in “Running the GNU Project
Debugger tool” on page 106.

Prerequisite software
The GDB client software is typically installed during the installation procedure. To verify the
installation, check whether the
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb file exists on the front
end node. The rest of the software support that is required for GDB is installed as part of the
control programs.

When compiling a program for the Blue Gene/Q system, you can use options to simplify
debugging.

Use the -g option on the compiler. This option tells the compiler to include symbol and source
statement information with the program. This information can be used by the GDB tool to map
storage to program data or instructions to source statements. The -g option and its variations
are available with both the GNU and XL compilers. For more information about debugging
options, see the compiler documentation. If code is not compiled with the -g option, only
low-level debugging is available and minimal symbol information is provided.

In addition to using the -g option, it is best to compile with the lowest possible level of
optimization when trying to debug an application. Optimization can change the way variables
are used and stored, eliminate code sequences, and reorder instructions in a way that can be
misleading for the debugger.

Because programs are run remotely on the Blue Gene/Q system, remote debugging must be
used to debug programs running on the Blue Gene/Q compute node. To provide GDB support
for the compute node, a GDB server, called gdbtool, must first be started for each rank to be
debugged. The tool can be started either when the job is started by using an option on the
runjob command, or by explicitly running the start_tool command to start the gdbtool
server. When started with the runjob command, the gdbtool server is started when the
program begins running. When started using the start_tool command, the gdbtool server is
attached to a job that is already running. This method is useful when a job is hanging or not
progressing. When started with the runjob command, a single instance of the gdbtool server
is started on each I/O node that is associated with the job. The gdbtool server connects to the
node that contains the target process. If multiple gdbtool sessions are to be used to debug a
single process or additional processes in the same job, the additional instances must be
started with the start_tool command. See the examples in Running the GNU Project
Debugger tool.

Running the GNU Project Debugger tool
Perform these steps to use the GNU Project Debugger tool to debug a Blue Gene/Q
application:

1. Compile the program with the -g option and no optimization:

/bgsys/drivers/ppcfloor/comm/xl/bin/mpixlc -o helloMPI helloMPI.c -g -O0

2. Start the GDB tool.

To start a gdbtool server when running a program, add the -start-tool option to the runjob
command. The path is /sbin/gdbtool.

3. Find the IP address for the I/O node that corresponds to the rank to be debugged.

The default value for the rank is 0, and the default value for the listen_port is 10000.
Figure 8-1 on page 107 shows an example of starting the gdbtool server with the runjob
command when this configuration is used.
106 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Figure 8-1 Finding an IP address for rank 0 and listen_port 10000

A GDB client session is started. The GDB client for Blue Gene/Q is in the same directory
as the toolchain. Figure 8-2 shows an example of the output when the session is started.

Figure 8-2 Example output for starting a GDB client session

4. When this line is displayed, push enter in the runjob session. Figure 8-3 shows the output.

Figure 8-3 Output that indicates that GDB commands can be entered

At this point, GDB commands can be entered to debug the program.

5. Optional: To debug another rank in the same process, use the start_tool command to
start another session to attach to the same process:

a. Use the list_jobs command to find the job ID for the process. Figure 8-4 shows an
example command.

Figure 8-4 Using the list_jobs command to find the job ID for a process

b. Use the dump_proctable command to find the IP address that is associated with the
rank to be debugged. Figure 8-4 shows an example command.

runjob --block R00-M0-N01 --cwd `pwd` --start-tool /sbin/gdbtool --exe
helloMPI --tool-args "--rank=4 --listen_port=10001"
tool started on 1 I/O nodes for 32 ranks.

Enter a rank to see its associated I/O node's IP address, or press enter to
start the job:
4
rank 4 uses I/O node R03-ID-J03 at IP address 172.20.215.28

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb ./helloMPI
GNU gdb (GDB) 7.1
…
(gdb) target remote 172.20.215.28:10001
Remote debugging using 172.20.215.28:10001

[Switching to Thread 1]
0x00000000010001d0 in ._start ()
(gdb)

/bgsys/drivers/ppcfloor/bin/list_jobs --user boger
1 job
 ID Status Executable Block User
 55469 Running helloMPI R03-M0-N12 boger
Chapter 8. Running and debugging applications 107

Figure 8-5 Using the dump_proctable command to find an IP address that is associated with the
rank to be debugged

c. Run the start_tool command to start another gdbtool server. For example, use the
command in Figure 8-6 to connect to rank 21 of job 55469, and specify another
listen_port.

Figure 8-6 Running the start_tool command to start another gdbtool server

d. Start another gdb client session to connect to the gdbtool session. Figure 8-7 shows a
command to debug rank 21.

Figure 8-7 Example command to debug rank 21

The GDB tool displays where it is stopped in the program and provides a prompt for
entering GDB client commands.

The tool_status command can be used to provide additional information when using the
start_tool command. This command provides status information about tools that have been
started with the start_tool command. It can be helpful if there are connection problems or
other issues during the debugging process. Figure 8-8 shows an example of the tool_status
command and its output.

Figure 8-8 Example tool_status command and output

8.2.3 Coreprocessor debugger

The Coreprocessor debugger can be used to debug problems at all levels (hardware, kernel,
and application). See IBM System Blue Gene Solution: Blue Gene/Q System Administration,
SG24-7869 for more information.

/bgsys/drivers/ppcfloor/bin/dump_proctable --id 55469 --rank 21

Rank I/O node IP address pid
21 172.20.215.26 0x01001001

/bgsys/drivers/ppcfloor/bin/start_tool --tool /sbin/gdbtool --args
"--rank=21 --listen_port=10002" --id 55469
tool 2 started on 2 I/O nodes for 32 ranks.

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb
./helloMPI
…
(gdb) target remote 172.20.215.26:10002
Remote debugging using 172.20.215.26:10002

/bgsys/drivers/ppcfloor/bin/tool_status --id 16047700
2 tools
Id Path Status Message Start Time
1 /sbin/gdbtool Running 2012-Feb-28 09:00:24.463421
2 /sbin/gdbtool Running 2012-Feb-28 09:03:14.977132
108 IBM System Blue Gene Solution: Blue Gene/Q Application Development

8.2.4 The addr2line utility

When a Blue Gene/Q program runs unsuccessfully, a core file is generated. You can use the
addr2line utility to analyze the core file. This utility uses the debugging information in an
executable program to provide information about the file name and line number for the source
that was used to create the program. The addr2line program is a standard Linux utility. For
more information, see the Linux manual page entry for the addr2line command.

Creating a file to use with the addr2line utility
Perform the following steps to create a file that can be used with the addr2line utility:

1. Compile the program with the -g option. The -g switch tells the compiler to include
debugging information in the executable program.

2. Run the program. The program generates a core file. The core file is a plain text file that
can be viewed with the vi editor. The information in this file must be reformatted before it
can be used with the addr2line command.

Example 8-1 shows the default format of the core file.

Example 8-1 Core file output format

+++STACK
Frame Address Saved Link Reg
0000001fffff5ac0 000000000000001c
0000001fffff5bc0 00000000018b2678
0000001fffff5c60 00000000015046d0
0000001fffff5d00 00000000015738a8
0000001fffff5e00 00000000015734ec
0000001fffff5f00 000000000151a4d4
0000001fffff6000 00000000015001c8
0000001fffff6120 00000000014f7cec
0000001fffff6220 0000000001531974
0000001fffff6320 0000000001426d00
0000001fffff63e0 0000000001001730
0000001fffff6d80 00000000010040c8
0000001fffff6e20 000000000103ad0c
0000001fffffba20 000000000117f6e0
0000001fffffbaa0 000000000187ed78
0000001fffffbd80 000000000187f074
0000001fffffbe40 0000000000000000
---STACK

3. Delete all of the information except the addresses in the Saved Link Reg column, as
shown in Example 8-2.

Example 8-2 Addresses in the Saved Link Reg column

000000000000001c
00000000018b2678
00000000015046d0
00000000015738a8
00000000015734ec
000000000151a4d4
00000000015001c8
00000000014f7cec
0000000001531974
Chapter 8. Running and debugging applications 109

0000000001426d00
0000000001001730
00000000010040c8
000000000103ad0c
000000000117f6e0
000000000187ed78
000000000187f074
0000000000000000

4. Replace the first eight 0s with 0x, as shown in Example 8-3.

Example 8-3 Information for use with the addr2line tool

0x0000001c
0x018b2678
0x015046d0
0x015738a8
0x015734ec
0x0151a4d4
0x015001c8
0x014f7cec
0x01531974
0x01426d00
0x01001730
0x010040c8
0x0103ad0c
0x0117f6e0
0x0187ed78
0x0187f074
0x00000000

You can also use a script to reformat the output. Example 8-4 shows a Perl script that reads a
core file, core.X, and outputs addresses in the correct format for the addr2line program.

Example 8-4 Perl script, bgqtranslate.pl, to reformat the core file for use with the addr2line utility

#!/usr/bin/perl -w

#
open the core.X file for reading
#
open (CF, " < " . $ARGV[0]) || die "usage: ./bgqtranslate.pl corefile";
#
Create the necessary extension for each task in the core.X file
#
$extension=".t";
$task_num=0;

$line = <CF>;
$in_stack = 0;

#
Loop to handle the core.X file, converting the necessary address
lines into the separate task files that have the correct format
for use with the addr2line -e executable command
110 IBM System Blue Gene Solution: Blue Gene/Q Application Development

#
while (! eof(CF))
{
 chomp ($line);
 if ($line eq "+++STACK")
 {
 $in_stack = 1;
 $line = <CF>;
 open (TF, " > " . $ARGV[0] . $extension . $task_num);
 }
 elsif ($line eq "---STACK")
 {
 $in_stack = 0;
 close (TF);
 $task_num++;
 }
 elsif ($in_stack == 1)
 {
 @addresses = split (/[\t]+/, $line);
 printf (TF "0x%s\n", substr($addresses[1],8));
 }
 $line = <CF>;
}

close (CF);

Running the addr2line utility
Follow the steps in “Creating a file to use with the addr2line utility” on page 109 to reformat
the core file before running the addr2line utility.

Use the Linux addr2line command on the front end node and enter the address found in the
core file and the -g executable. The utility displays the source line where the problem
occurred.

Figure 8-9 on page 112 shows how to use the addr2line utility with a reformatted core file to
identify potential problems in the code. In this case, the program is not compiled with the -g
flag option because this example is a production run. Compiling without the -g option
produces smaller executable code that performs better.

However, notice that the addr2line output points to the malloc() function. This information
means that the amount of memory might be insufficient to run this calculation. It might also
indicate problems that are related to the use of the malloc() function in the code.
Chapter 8. Running and debugging applications 111

Figure 8-9 Using the addr2line utility to identify potential problems in the code

8.3 What to do when a job fails

After a job starts, if any rank in the job terminates normally with exit(1), a SIGTERM signal is
sent to the remaining ranks. If any rank in the job terminates abnormally because of a signal,
the SIGKILL signal is sent to the remaining ranks. The locate_rank command can be used to
correlate a node location (for example, R00-M1-N12-J22) to an MPI rank on a per-job basis.

If a job terminates incorrectly, the error message is presented to the user with the standard
error (stderr) stream. Figure 8-10 shows an error that occurs when more memory is allocated
than is available.

Figure 8-10 Example output for job termination because of a memory allocation error

Because there is normal termination, no core file (core.X) is generated.

If abnormal termination occurs, the system generates multiple core files. Figure 8-10 shows
an example of system output when core files are created. Figure 8-11 on page 113 shows
example output when a job fails and core files are created.

$./bgqtranslate.pl core.0
$ addr2line -e ramses3d.wat < core.0.t0
/bgsys/drivers/DRV2012_0118_0003/ppc64-rhel60/toolchain/gnu/glibc-2.12.2/stdlib/abort.c:77
/bgsys/drivers/DRV2012_0118_0003/ppc64-rhel60/toolchain/gnu/glibc-2.12.2/libio/../sysdeps/unix/sysv/
linux/libc_fatal.c:186
/bgsys/drivers/DRV2012_0118_0003/ppc64-rhel60/toolchain/gnu/glibc-2.12.2/malloc/malloc.c:6323
/bgsys/drivers/DRV2012_0118_0003/ppc64-rhel60/toolchain/gnu/glibc-2.12.2/malloc/malloc.c:3777
/bgusr/smithbr/xmi/new/bgq/comm/lib/dev/mpich2/src/mpi/romio/adio/common/malloc.c:107
/bgusr/smithbr/xmi/new/bgq/comm/lib/dev/mpich2/src/mpi/romio/adio/ad_bg/ad_bg_aggrs.c:266
/bgusr/smithbr/xmi/new/bgq/comm/lib/dev/mpich2/src/mpi/romio/adio/ad_bg/ad_bg_aggrs.c:297
/bgusr/smithbr/xmi/new/bgq/comm/lib/dev/mpich2/src/mpi/romio/adio/ad_bg/ad_bg_hints.c:511
/bgusr/smithbr/xmi/new/bgq/comm/lib/dev/mpich2/src/mpi/romio/adio/common/ad_open.c:86
/bgusr/smithbr/xmi/new/bgq/comm/lib/dev/mpich2/src/mpi/romio/mpi-io/open.c:148
/bgusr/smithbr/xmi/new/bgq/comm/lib/dev/mpich2/src/binding/f77/file_openf.c:201
/bghome/heymanj/RAMSES/TelQuel/Src/bin/../pario/hints.f90:211
/bghome/heymanj/RAMSES/TelQuel/Src/bin/../pario/hints.f90:53
/bghome/heymanj/RAMSES/TelQuel/Src/bin/../amr/read_params.f90:111
/bghome/heymanj/RAMSES/TelQuel/Src/bin/../amr/ramses.f90:18
/bgsys/drivers/DRV2012_0118_0003/ppc64-rhel60/toolchain/gnu/glibc-2.12.2/csu/../csu/libc-start.c:226
/bgsys/drivers/DRV2012_0118_0003/ppc64-rhel60/toolchain/gnu/glibc-2.12.2/csu/../sysdeps/unix/sysv/linux/
powerpc/libc-start.c:194
??:0

"module_hydro_principal.f90", line 31: 1525-108 Error encountered while
attempting to allocate a data object. The program will stop.
2012-02-20 14:11:41.383 (WARN) [0xfff84778a40]
R01-M1-N04-64:432467:ibm.runjob.client.Job: normal termination with status 1
from rank 19
112 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Figure 8-11 Example output when a job fails and core files are created

The information in the +++STACK/---STACK address stack section of the file can be read with
the addr2line utility. See 8.2.4, “The addr2line utility” on page 109.

8.4 Debugging jobs

The snapbug and Coreprocessor tools can be used to debug jobs.

8.4.1 The snapbug tool

The snapug tool can be run only by the system administrator. This tool can be used to collect
debugging information from blocks, hung jobs, or jobs that terminate abnormally. It is intended
for first-failure data capture for failures on the Blue Gene/Q system.

The snapbug parameters are either a booted block name (compute or I/O block) or a running
job ID. The tool uses this information to identify all hardware resources that are associated
with that block (that is, if the compute block is specified, the tool finds jobs and the connected
I/O block). It extracts information from those resources.

The following examples show the format for running the snapbug tool:

/bgsys/drivers/ppcfloor/scripts/snapbug.pl -block=<blockname> [-output=<outputdir>]
/bgsys/drivers/ppcfloor/scripts/snapbug.pl -jobid=<jobid> [-output=<outputdir>]

The snapbug tool provides the following information:

� Reliability, availability, and serviceability (RAS) information from the block since boot

� Information about all jobs that ran on the block since boot (including executables and
lightweight core files)

� A Coreprocessor snapshot of I/O blocks and compute blocks

� Flight recorders (CNK and Linux)

� Service node information (driver version, memory usage, bg.properties)

� Control System logs since boot

� I/O node logs

� Block location information

8.4.2 The Coreprocessor tool

The Coreprocessor tool can also be used to debug a job. To specify a job, specify the process
ID (PID) of the runjob process. Users can specify either the Blue Gene job ID or the process
ID (PID) of the runjob process. To specify the job ID, users can use the -j parameter. To
specify the PID, users can use the -pid option. The PID can be specified on the command line
with the --pid option or added with the File menu in the Blue Gene Navigator interface. See

2012-02-01 16:28:34.587 (WARN) [0xfff8b9289e0]
R01-M1-N00-256:232446:ibm.runjob.client.Job: terminated by signal 11
2012-02-01 16:28:34.588 (WARN) [0xfff8b9289e0]
R01-M1-N00-256:232446:ibm.runjob.client.Job: abnormal termination by signal 11
from rank 0
Chapter 8. Running and debugging applications 113

the IBM System Blue Gene Solution: Blue Gene/Q System Administration, SG24-7869
Redbooks publication for more information about the Coreprocessor tool.
114 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Appendix A. Mapping

This appendix provides an overview of the mapping of tasks for the Blue Gene/Q system.

A

© Copyright IBM Corp. 2013. All rights reserved. 115

Mapping overview

Mapping is defined as the assignment of processes to Blue Gene processors. The term MPI
rank denotes a process, but the concept applies whether MPI or some other communication
protocol is used. The network topology for Blue Gene/Q is a five-dimensional (5D) torus or
mesh, with direct links between the nearest neighbors in the ±A, ±B, ±C, ±D, and ±E
directions. When communication involves the nearest neighbors on the torus network, a large
fraction of the theoretical peak bandwidth can be obtained. However, when MPI ranks
communicate with many hops between the neighbors, the effective bandwidth is reduced by a
factor that is equal to the average number of hops that messages take on the torus network.
In a number of cases, it is possible to control the placement of MPI ranks so that
communication remains local. This placement can significantly improve scaling for a number
of applications, particularly at large processor counts.

The default mapping is to place MPI ranks on the system in ABCDET order where the
rightmost letter increments first, and where <A,B,C,D,E> are torus coordinates and T is the
processor ID in each node (T = 0 to N -1, where N is the number of processes per node being
used). If the job uses the default mapping and specifies one process per node, the following
assignment results:

� MPI rank 0 is assigned to coordinates <0,0,0,0,0,0>.
� MPI rank 1 is assigned to coordinates <0,0,0,0,1,0>.
� MPI rank 2 is assigned to coordinates <0,0,0,1,0,0>.

The results continue like this, first incrementing the E coordinate, then the D coordinate, and
so on, until all of the processes are mapped. Note that the E dimension is always 2 on the
Blue Gene/Q system.

The default mapping is often a good choice. The mapping can also be controlled by passing
arguments to the runjob command, or alternatively by constructing a specially ordered
communicator in the application. If a batch scheduling system is used, the runjob command
cannot be used directly, but the batch utility might contain a similar feature.

Mapping might not be important for jobs that use one midplane (512 nodes) or less of the
Blue Gene/Q system due to the compact shape, <A,B,C,D,E> = <4,4,4,4,2> for a midplane,
and the high degree of connectivity. Mapping can be particularly useful for applications that
have a regular Cartesian topology, and are dominated by nearest-neighbor boundary
exchange, particularly for large configurations. For use with a batch job scheduler, mapping
requires information about the shape of the block, not just the number of nodes, and special
key words might be required to define the shape.

The runjob command for the Blue Gene/Q system includes two methods to specify the
mapping. For example, you can add --mapping TEDCBA to request TEDCBA order, where A
increments first. All permutations of ABCDET are permitted. You can also create a
customized map file, and use --mapping my.map, where my.map is the name of the map file.
Using a customized map file provides the most flexibility. The syntax for the map file is simple.
It must contain one line for each MPI rank in the Blue Gene/Q block, with six integers on each
line separated by spaces. The six integers specify the <A,B,C,D,E,T> coordinates for each
MPI rank. The first line in the map file assigns MPI rank 0, the second line assigns MPI rank
1, and so on. It is important to ensure that the map file is consistent, with a unique relationship
between MPI rank and <A,B,C,D,E,T> location. The “T” coordinate in the map file ranges from
0 to N - 1, where N is the number of ranks per node.
116 IBM System Blue Gene Solution: Blue Gene/Q Application Development

General guidance

For applications that use a regular Cartesian topology, it is often possible to map MPI ranks
onto the Blue Gene/Q torus network in a way that preserves locality for nearest-neighbor
communication. For example, in a one-dimensional processor topology, where each MPI rank
communicates with its rank ±1, the default ABCDET mapping can be good for blocks large
enough to use torus wrap-around. The “T” coordinate increments first. When using many
ranks per node, most of the communication is within the node, using shared memory. On the
Blue Gene/Q system, the E-dimension is always two, and is always torus-enabled. The other
dimensions become torus-enabled when their size reaches 4 or a multiple of 4. With torus
wrap-around, the ABCDET order keeps one-dimensional communication local, except for one
extra hop at the torus edges. The extra hop can be eliminated by using an ordering that
makes a snake-like pattern through the torus by reversing direction after completing each
one-dimensional sweep.

Two-dimensional (2D) logical topologies are more challenging. In many cases, the default
ordering can be effective. For example, suppose that you are using a Blue Gene/Q midplane
with 16 processes per node. The corresponding coordinates have sizes <4,4,4,4,2,16> for
<A,B,C,D,E,T>. When two or three of these dimensions are grouped together, this ordering is
naturally a good fit for logical decompositions 256 32 and 64 128, where the last
dimension increments first. For a 128 64 decomposition, TEDCBA order, where A
increments first, is a better choice. These mappings have one extra hop at torus boundaries,
and a customized map file can be used to create a better mapping. For example, with 16 MPI
ranks per node, the 16 processes are arranged in a logical 4 4 box (or 2 8, 8 2, and so
on). This configuration is useful because most of the boundary exchange can be kept inside
each node, using shared memory. To complete the mapping, group two or three of the torus
dimensions into the logical X or Y dimension. This grouping creates a snake-like pattern that
winds through the torus and reverses direction at the end of each row. This technique can
ensure that shared-memory is used for much of the communication, and that the maximum
number of hops on the torus network is one. This configuration minimizes link sharing and
optimizes the bandwidth available for boundary exchange. You can use this strategy to
construct a map file that is passed to the runjob command or to the batch system.
Alternatively, you can keep the default mapping and use the same strategy to order the ranks
in a new communicator that is an input parameter for the MPI_Cart_create() function. In that
case, set the reorder parameter for the MPI_Cart_create() function to false, so that the
ordering is preserved. In the first software release, the MPI_Cart_create() function is not fully
aware of the topology on the Blue Gene/Q system. When the MPI_Cart_create() function is
called with the reorder parameter set to true, it typically does not provide an optimal mapping.
If you use a customized map file with the MPI_Cart_create() function, set the reorder
parameter to false to preserve the ordering in the map file. Pseudo-code to generate a 2D
map file is sketched in Example A-1 on page 118. The code to construct an ordered
communicator is similar. Each process defines its logical X and Y coordinates and its rank in
the 2D communicator. Then, the MPI_Comm_split() function can be used to create a
reordered communicator with the rank in the 2D communicator as the key argument.

Three-dimensional (3D) Cartesian topologies occur in many simulations, and a similar
strategy can be used. Again, the default mapping can be effective in a number of cases. For a
midplane with 16 processes per node, the <A,B,C,D,E,T> dimensions are <4,4,4,4,2,16>.
When one or more dimensions are grouped together, the default mapping can be a good
match for logical 3D decompositions such as 163216 and 161632, where the last
dimension increments first. There is one extra hop at torus boundaries, which can be avoided
by constructing a customized map file, or equivalently, a specially ordered communicator.
Link-sharing is a bandwidth consideration, so this optimization tends to be less important for
exchange of short messages, where latency can be dominant. Consider simple permutations
of ABCDET, and logical decompositions that can map naturally onto groups of those
Appendix A. Mapping 117

coordinates, before exploring map files or reordered communicators. MPI performance tools
can provide some guidance for the potential impact of mapping. If contention for link
bandwidth is a major problem, performance can be optimized by controlling the layout.

Example A-1 shows pseudo-code for creating a map file for 2D Cartesian topologies.

Example A-1 Pseudo-code for creating a map file for 2D Cartesian topologies

for each of the five torus dimensions A,B,C,D,E {
 define 2D node coordinates (iX, iY) and sizes nX, nY
 where iX uses two of the torus dimensions and iY uses the other three
 define a local box within each node with dimensions bX*bY = ranks-per-node

 for each process within the node {
 define local coordinates : tX = 0 … bX-1, tY = 0 … bY-1
 define 2D logical coordinates : pX = tX + bX*iX

pY = tY + bY*iY
 rank in the 2D communicator : rank2D = pY + pX*(bY*nY)
 save torus information for each rank
 }
}

sort in order of increasing rank2D, saving the index array

print the map file using the ordering from the sort

A portion of a map file is shown in Example A-2. This map file is generated for a midplane
partition (shape ABCDE = 4 4 4 4 2) with 16 ranks per node, for a total of 8192 ranks
arranged in a logical 128 64 two-dimensional process grid. The layout in each node is a box
with dimensions 4 4. When communication is nearest-neighbor on the two-dimensional
process grid, this layout keeps most of the communication within each node, and keeps
communication on the torus network local. Although custom map files can be useful, nearly
optimal performance can often be obtained by simpler methods. In this example, the default
mapping, ABCDET, is nearly ideal for a 64 128 two-dimensional process grid.

Example A-2 Map file for a 2D Cartesian layout with 128 x 4 processes

#A B C D E T # 2d : <X,Y>
 0 0 0 0 0 0 # 2d : <0,0>
 0 0 0 0 0 1 # 2d : <0,1>
 0 0 0 0 0 2 # 2d : <0,2>
 0 0 0 0 0 3 # 2d : <0,3>
 0 0 0 1 0 0 # 2d : <0,4>
 0 0 0 1 0 1 # 2d : <0,5>
 0 0 0 1 0 2 # 2d : <0,6>
 0 0 0 1 0 3 # 2d : <0,7>
 …

Quantum chromodynamics (QCD) applications typically use a four-dimensional (4D) process
topology. This topology can often fit perfectly onto the Blue Gene/Q system. However, a map
file or an ordered communicator might be required. For a midplane of a Blue Gene/Q system
that uses 32 ranks per node, the <A,B,C,D,E,T> dimensions are <4,4,4,4,2,32>. If you want to
use a roughly balanced 4D decomposition, such as (X,Y,Z,T) = (8,8,16,16), there is no natural
grouping of ABCDET that fits. In this case, it is ideal to consider the 32 MPI ranks within each
node as being arranged in a 4D box; for example: bx = 2,by = 2,bz = 4,bt = 2. Then one
logical 4D mapping can be described as (bx*A,by*B,bz*C,bt*DE), with many equivalent
118 IBM System Blue Gene Solution: Blue Gene/Q Application Development

solutions, and where the DE is treated as a one-dimensional line that snakes through the DE
plane to avoid the extra hop at torus boundaries. It is straightforward to use this strategy to
construct either a customized map file that is passed to the runjob command or the batch
system, or an ordered communicator that is used for boundary exchange in the application.
For the same configuration, one midplane with 32 ranks per node, there are a number of other
logical 4D decompositions that map naturally with the default ABCDET mapping, such as
(16,16,2,32), (4,16,8,32), and permutations. Ideally, it is preferable to use the best logical
decomposition and a perfect mapping to solve the problem. Again, these considerations apply
mainly to large configurations, where link bandwidth, not latency, is the key factor.

For unstructured grids, the default ordering is frequently a good choice. This happens
because neighboring cells tend to end up in the same part of the machine, and ABCDET
order keeps many contiguous ranks in close proximity. MPI performance tools can be used to
check for locality, but optimization of the layout in the general case of unstructured grids is a
challenging problem.

To summarize, applications, particularly applications that use a regular Cartesian topology,
might benefit from a careful mapping of processes onto processors. The default mapping is
frequently a good choice. However, it might be possible to optimize performance by using a
map file passed to the runjob command or to the batch system. It might also be possible to
optimize performance by constructing a specially ordered communicator for use within the
application.
Appendix A. Mapping 119

120 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Appendix B. Blue Gene/Q personality

System calls that provide access to certain hardware or system features can be accessed by
applications. This appendix illustrates how to obtain hardware-related information.

B

© Copyright IBM Corp. 2013. All rights reserved. 121

Personality of Blue Gene/Q nodes

The personality of a Blue Gene/Q node is the static data given to every compute node and I/O
node at boot time by the Control System. This data contains information that is specific to the
node, with respect to the block that is being booted.

The personality is a set of C language structures that contains such items as the node
coordinates on the torus network. This information can be useful if the application
programmer wants to determine, at run time, where the tasks of the application are running. It
can also be used to tune certain aspects of the application at run time. For example, it can be
used to determine which set of tasks shares the same I/O node and then optimize the
network traffic from the compute nodes to that I/O node.

Examples of retrieving Blue Gene/Q personality information

Example B-1 illustrates how to invoke and print selected hardware features.

Example B-1 personality.c program

#include <stdio.h>
#include <mpi.h>
#include <spi/include/kernel/location.h>

int main(int argc, char * argv[])
{
 uint64_t Nflags;
 char procname[128];
 Personality_t pers;
 int rank, procid, core, hwthread, namelen;
 int Anodes, Bnodes, Cnodes, Dnodes, Enodes;
 int Acoord, Bcoord, Ccoord, Dcoord, Ecoord;
 int Atorus, Btorus, Ctorus, Dtorus, Etorus;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Get_processor_name(procname, &namelen);
 procid = Kernel_ProcessorID(); // 0-63
 core = Kernel_ProcessorCoreID(); // 0-15
 hwthread = Kernel_ProcessorThreadID(); // 0-3
 Kernel_GetPersonality(&pers, sizeof(pers));
 Anodes = pers.Network_Config.Anodes; Acoord = pers.Network_Config.Acoord;
 Bnodes = pers.Network_Config.Bnodes; Bcoord = pers.Network_Config.Bcoord;
 Cnodes = pers.Network_Config.Cnodes; Ccoord = pers.Network_Config.Ccoord;
 Dnodes = pers.Network_Config.Dnodes; Dcoord = pers.Network_Config.Dcoord;
 Enodes = pers.Network_Config.Enodes; Ecoord = pers.Network_Config.Ecoord;
 Nflags = pers.Network_Config.NetFlags;
 if (Nflags & ND_ENABLE_TORUS_DIM_A) Atorus = 1; else Atorus = 0;
 if (Nflags & ND_ENABLE_TORUS_DIM_B) Btorus = 1; else Btorus = 0;
 if (Nflags & ND_ENABLE_TORUS_DIM_C) Ctorus = 1; else Ctorus = 0;
 if (Nflags & ND_ENABLE_TORUS_DIM_D) Dtorus = 1; else Dtorus = 0;
 if (Nflags & ND_ENABLE_TORUS_DIM_E) Etorus = 1; else Etorus = 0;
 if (rank == 0) {
 printf("block shape : <%d,%d,%d,%d,%d>\n",
 Anodes,Bnodes,Cnodes,Dnodes,Enodes);
122 IBM System Blue Gene Solution: Blue Gene/Q Application Development

 printf("torus links enabled : <%d,%d,%d,%d,%d>\n",
 Atorus,Btorus,Ctorus,Dtorus,Etorus);
 }
 printf("rank %d has processor name %s\n", rank, procname);
 printf("rank %d location <%d,%d,%d,%d,%d> core %d hwthread %d procid = %d\n",
 rank,Acoord,Bcoord,Ccoord,Dcoord,Ecoord,core,hwthread,procid);
 MPI_Finalize();
 return 0;
}

The following command is an example command that is used to build a personality test
program from personality.c with the GNU compiler for Blue Gene/Q:

/bgsys/drivers/ppcfloor/comm/gcc/bin/mpicc personality.c -o personality

Example B-2 shows part of the output that is generated by running the personality program
with the default (ABCDET) ordering using a 128-node block and two ranks per node. See
Appendix A, “Mapping” on page 115. The output is sorted by MPI rank for readability, in
practice; however, output is not ordered.

Example B-2 Output with default (ABCDET) order, a 128-node block, and two ranks per node

$ runjob --block R02-M1-N00-128 --ranks-per-node 2 --np 256 --env_all --cwd $PWD : personality

block shape : <2,2,4,4,2>
torus links enabled : <0,0,1,1,1>
rank 0 has processor name Task 0 of 256 (0,0,0,0,0,0) R02-M1-N00-J00
rank 0 location <0,0,0,0,0> core 0 hwthread 0 procid = 0
rank 1 has processor name Task 1 of 256 (0,0,0,0,0,1) R02-M1-N00-J00
rank 1 location <0,0,0,0,0> core 8 hwthread 0 procid = 32
rank 2 has processor name Task 2 of 256 (0,0,0,0,1,0) R02-M1-N00-J07
rank 2 location <0,0,0,0,1> core 0 hwthread 0 procid = 0
rank 3 has processor name Task 3 of 256 (0,0,0,0,1,1) R02-M1-N00-J07
rank 3 location <0,0,0,0,1> core 8 hwthread 0 procid = 32
rank 4 has processor name Task 4 of 256 (0,0,0,1,0,0) R02-M1-N00-J12
rank 4 location <0,0,0,1,0> core 0 hwthread 0 procid = 0
...

Example B-3 shows output from the personality program with TEDCBA mapping. The output
is sorted by MPI rank for readability.

Example B-3 Output with TEDCBA order, a 128-node block, and two ranks per node

$ runjob --block R02-M1-N00-128 --ranks-per-node 2 --np 256 --mapping TEDCBA --env_all --cwd
$PWD : personality

block shape : <2,2,4,4,2>
torus links enabled : <0,0,1,1,1>
rank 0 has processor name Task 0 of 256 (0,0,0,0,0,0) R02-M1-N00-J00
rank 0 location <0,0,0,0,0> core 0 hwthread 0 procid = 0
rank 1 has processor name Task 1 of 256 (1,0,0,0,0,0) R02-M1-N00-J29
rank 1 location <1,0,0,0,0> core 0 hwthread 0 procid = 0
rank 2 has processor name Task 2 of 256 (0,1,0,0,0,0) R02-M1-N00-J03
rank 2 location <0,1,0,0,0> core 0 hwthread 0 procid = 0
rank 3 has processor name Task 3 of 256 (1,1,0,0,0,0) R02-M1-N00-J30
rank 3 location <1,1,0,0,0> core 0 hwthread 0 procid = 0
rank 4 has processor name Task 4 of 256 (0,0,1,0,0,0) R02-M1-N00-J01
Appendix B. Blue Gene/Q personality 123

rank 4 location <0,0,1,0,0> core 0 hwthread 0 procid = 0
…

124 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Appendix C. PAMI and MPI header files and
libraries

This appendix provides information about the Parallel Active Messaging Interface (PAMI) and
Message Passing Interface (MPI) header files and libraries for the Blue Gene/Q system.

C

© Copyright IBM Corp. 2013. All rights reserved. 125

Blue Gene/Q applications

Blue Gene/Q applications run on the Blue Gene/Q compute nodes and can use PAMI or MPI
software to communicate between application processes on different compute nodes.

There are six different builds of the MPICH2 software. Each build contains identical header
files. Table C-1 describes the header files in the following directories:

� /bgsys/drivers/ppcfloor/comm/gcc/include
� /bgsys/drivers/ppcfloor/comm/gcc.legacy/include
� /bgsys/drivers/ppcfloor/comm/xl/include
� /bgsys/drivers/ppcfloor/comm/xl.legacy/include
� /bgsys/drivers/ppcfloor/comm/xl.ndebug/include
� /bgsys/drivers/ppcfloor/comm/xl.legacy.ndebug/include

Table C-1 MPI header files

Table C-2 describes the PAMI header files in the
/bgsys/drivers/ppcfloor/comm/sys/include/ and
/bgsys/drivers/ppcfloor/comm/sys-fast/include/ directories.

Table C-2 PAMI header files in the comm/sys/include and comm/sys-fast/include directories

Table C-3 on page 127 describes the static and dynamic MPI libraries in the following
directories:

� /bgsys/drivers/ppcfloor/comm/gcc/lib
� /bgsys/drivers/ppcfloor/comm/gcc.legacy/lib
� /bgsys/drivers/ppcfloor/comm/xl/lib
� /bgsys/drivers/ppcfloor/comm/xl.legacy/lib
� /bgsys/drivers/ppcfloor/comm/xl.ndebug/lib
� /bgsys/drivers/ppcfloor/comm/xl.legacy.ndebug/lib

File name Description

mpicxx.h Message Passing Interface (MPI) C++ interface

mpif.h MPI Fortran interface

mpi.h MPI C interface

mpiof.h MPI I/O Fortran interface

mpio.h MPI I/O C interface

mpix.h Blue Gene/Q extensions to the MPI
specifications

mpi.mod,mpi_base.mod,
mpi_constants.mod,
mpi_sizeofs.mod

Fortran 90 bindings

opa_config.h,
opa_primitives.h,
opa_queue.h,
opa_util.h

OpenPA headers used by MPICH2

File name Description

pami.h Common Blue Gene/Q message layer interface

pami_sys.h Common Blue Gene/Q message layer interface platform definitions
126 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table C-3 Static and dynamic libraries in the comm/gcc and comm/xl directories

Table C-4 describes the static and dynamic PAMI libraries in the
/bgsys/drivers/ppcfloor/comm/sys/lib and /bgsys/drivers/ppcfloor/comm/sys-fast/lib
directories.

Table C-4 Static and dynamic libraries in the comm/sys/lib and comm/sys-fast/lib directories

File name Description

libmpich.a, libmpic.so C bindings for MPICH2

libcxxmpich.a
libcxxmpich.so

C++ bindings for MPICH2

libfmpich.a
libfmpich.so

Fortran bindings for MPICH2

libfmpich_.cnk.a Fortran bindings for MPICH2 with extra underscoring; XL only

libmpich.f90.a
libmpich.f90.so

Fortran 90 bindings

libopa.a OpenPA library used by MPICH2

libtvmpich2.so TotalView library for MPICH2 queue debugging

File name Description

libpami.a, libpami.so Common Blue Gene/Q message library
Appendix C. PAMI and MPI header files and libraries 127

128 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Appendix D. MPI and CNK environment
variables

This appendix describes the environment variables that affect the run time characteristics of
programs that run on the Blue Gene/Q compute nodes. These variables configure settings for
the Message Passing Interface (MPI) and the Compute Node Kernel (CNK).

Environment variables can be used to improve performance or modify functional attributes of
the application.

The following topics are covered:

� Message Passing Interface environment variables
� Compute Node Kernel environment variables
� Setting environment variables

D

© Copyright IBM Corp. 2013. All rights reserved. 129

Message Passing Interface environment variables

The Blue Gene/Q Message Passing Interface (MPI) implementation provides several
environment variables that affect its behavior. Setting these environment variables can allow a
program to run faster, or, if set incorrectly, might cause the program not to run at all. None of
these environment variables are required to be set for the Blue Gene/Q MPI implementation
to work.

Table D-1 shows the MPI environment variables.

Table D-1 MPI environment variables

Environment variable Description Default
value

COMMAGENT_
RGETPACINGMAX

The maximum number of bytes allowed to be in the network at one
time as a result of paced remote gets from each node. This number
must be a multiple of COMMAGENT_RGETPACINGSUBSIZE.
The default value depends on the number of nodes in the block, as
shown in Table D-2.

See
Table D-2

COMMAGENT_
RGETPACINGSUBSIZE

The size, in bytes, of a submessage used for remote get pacing. The
pacing logic breaks a large remote get into submessages of this size.
Table D-3 shows the default values for the
COMMAGENT_RGETPACINGSUBSIZE environment variable. These
values vary depending on the size of the block where the job is being
run.

See
Table D-3

MUSPI_INJFIFOSIZE The size, in bytes, of each injection first-in, first-out queue (FIFO).
These FIFOs store 64-byte descriptors. Each descriptor describes a
memory buffer to be sent on the torus. Making this size larger might
reduce memory usage and latency when there are many outstanding
messages. Reducing this size might increase that memory usage and
latency. PAMI messaging optimally uses 10 injection FIFOs per
context, although fewer FIFOs can be used when resources are
constrained.

65536
(64 KB)

MUSPI_NUMBATIDS The number of base address table IDs per process reserved for use
by a messaging unit (MU) SPI application.

0

MUSPI_NUMCLASSROUTES The number of collective class routes reserved for use by an MU SPI
application. This value is also the number of global interrupt class
routes reserved for use by an MU SPI application.

0

MUSPI_NUMINJFIFOS The number of injection FIFOs per process reserved for use by an MU
system programming interface (SPI) application.

0

MUSPI_NUMRECFIFOS The number of reception FIFOs per process reserved for use by an
MU SPI application.

0

MUSPI_RECFIFOSIZE The size, in bytes, of each reception FIFO. Incoming torus packets are
stored in this FIFO until software can process them. Making this size
larger can reduce torus network congestion. Making this size smaller
leaves more memory available to the application. PAMI messaging
uses one reception FIFO per context.

1048576
bytes
(1 MB)

PAMI_A2A_PACING_
WINDOW

The number of simultaneous send operations to start on Alltoall(v)
collectives. Additional send operations cannot be started until these
operations finish. This requirement reduces the resource usage for
large geometries.

1024
130 IBM System Blue Gene Solution: Blue Gene/Q Application Development

PAMI_
ATOMICBARRIER_LOOPS

The number of attempts to complete the barrier in each pass. 32

PAMI_CLIENT_SHMEMSIZE The number of bytes that are allocated from shared memory to each
client. Use the “K” and “k” suffix as a 1024 multiplier or the 'M' and 'm'
suffix as a 1024 1024 multiplier.
The default value depends on the number of tasks in the node.
4M More than one task is on the node.
0 All other settings.

See
description

PAMI_CLIENTS A comma-separated ordered list of clients (no spaces). The complete
syntax is [name][:repeat][/weight][,[name][:repeat][/weight]]*
Each client has the form [name][:repeat][/weight], where:
� "name" is the name of the client. For example, the name of the

Blue Gene/Q MPICH2 client is MPI. The default value for this
option is the null string.

� ":repeat" is the repetition factor, where repeat is the number of
clients having this same name. The default value for this option is
1.

� "/weight" is the relative weight assigned to the client, where
weight is the weight value. The default value for this option is 1.
The weight is used to determine the portion of the messaging
resources that is given to the client, relative to the other clients.

When middleware calls the PAMI_Client_create() function, it provides
the name of the client. PAMI searches through the PAMI_CLIENTS in
the order they are specified, looking for an exact name match. If there
is not an exact name match with any of the PAMI_CLIENTS, PAMI
searches through the PAMI_CLIENTS again, looking for a client with a
null name string. The null name string is a wildcard and matches any
client name. If there are exact or wildcard name matches, the first
match that does not already have an active client is used, and the
weight of that client determines the percentage of the available
resources that are allocated to the client. If there are no available and
matching clients, the PAMI client is not created.

The default value of the PAMI_CLIENTS environment variable is :1/1,
which means that all resources are assigned to the first client created,
regardless of the client name, and all subsequent attempts to create a
client fail due to insufficient resources.

If any of the clients specified on PAMI_CLIENTS are unnamed, or
more than one client has the same name, the order in which the clients
are created must be the same on all processes in the job.
The first client listed has exclusive use of the message unit combining
collective hardware for optimizing reduction operations. The other
clients use algorithms that do not use the message unit combining
collective hardware.

":1/1"

Environment variable Description Default
value
Appendix D. MPI and CNK environment variables 131

PAMI_CLIENTS (continued) The following examples show how the PAMI_CLIENTS variable can be
used.
� PAMI_CLIENTS=MPI,CLIENTA means that up to two clients can

use PAMI: one must be MPI, and the other must be CLIENTA. The
MPI client is assigned the message unit combining collective
hardware, and the two clients evenly split the remaining
messaging resources.

� PAMI_CLIENTS=MPI:3,CLIENTA/2,CLIENTB:2/3 means that up
to six clients can use PAMI. Three can be MPI, one can be
CLIENTA, and two can be CLIENTB. Each MPI client has weight
1. CLIENTA has weight 2, and each CLIENTB client has weight 3.
In this example, each CLIENTB client gets three times the amount
of resources as each MPI client, and the first MPI client created is
assigned the message unit combining collective hardware.

� PAMI_CLIENTS=MPI/3,/2 means that up to three clients can use
PAMI. Two of the clients are unnamed, meaning that they can be
any of the PAMI clients, and one client can only be MPI. The first
MPI client created has resource weight 3 and is assigned the
message unit combining collective hardware. The first non-MPI
client created (or possibly the second MPI client created) has
resource weight 2, and the second non-MPI client created (or
possibly the second or third MPI client created) has resource
weight 1.

� PAMI_CLIENTS is not specified. This setting means that there
can be only one client, with any name, and it is assigned all of the
resources.

� Default ":1/1"
PAMI uses one reception FIFO per context and, optimally, uses 10
injection FIFOs per context, although fewer injection FIFOs can be
used when resources are constrained.
For more information, see the descriptions of the following variables:
� MUSPI_NUMBATIDS
� MUSPI_NUMCLASSROUTES
� MUSPI_NUMINJFIFOS
� MUSPI_NUMRECFIFOS
� MUSPI_INJFIFOSIZE
� MUSPI_RECFIFOSIZE
� PAMI_MU_RESOURCES

":1/1"

PAMI_CONTEXT_
SHMEMSIZE

Number of bytes allocated from shared memory to every context in
each client. Use the “K” and “k” suffix as a 1024 multiplier or the “M”
and “m” suffix as a 1024 1024 multiplier.

135K

PAMI_GLOBAL_SHMEMSIZE Number of bytes allocated from shared memory for global information
such as the mapcache. Use the “K” and “k” suffix as a 1024 multiplier,
or the “M” and “m” suffix as a 1024 1024 multiplier.

4M

PAMI_M2M_ROUTING For an all-to-all message transfer, this setting specifies the network
routing that is used.
"DETERMINISTIC" Use deterministic routing.
"DYNAMIC" Use dynamic routing.

"DYNAMIC"

Environment variable Description Default
value
132 IBM System Blue Gene Solution: Blue Gene/Q Application Development

PAMI_M2M_ZONE For an all-to-all message transfer that uses DYNAMIC routing, this
variable specifies the routing zone that is used:
� 0 Use zone 0.
� 1 Use zone 1.
� 2 Use zone 2.
� 3 Use zone 3.

The default settings depend on the size of the block:
� 1 The blocks is smaller than 512 nodes.
� 0 The block is 512 nodes or larger.

See
description

PAMI_MAX_COMMTHREADS Maximum number of commthreads to create. This setting can be used
to avoid hardware thread oversubscription.

(64 / ranks
per node) - 1

PAMI_MEMORY_OPTIMIZED Determines whether PAMI is configured for a restricted memory job. If
not set, PAMI is not memory optimized and uses memory as needed
to increase performance.

Not set.

PAMI_MU_RESOURCES Determines whether PAMI calculates the number of available contexts
based on an “optimal” or a “minimal” allocation of MU resources to
each context. Supported environment variable values are not
case-sensitive and include:

Optimal An optimal allocation of MU resources to each context
limits the maximum number contexts that can be created.
Each context is allocated sufficient MU resources to fully
use the MU hardware and torus network.

Minimal A minimal allocation of MU resources to each context
allows the maximum number of contexts to be created
regardless of MU hardware and torus network
considerations.

"Optimal"

PAMI_
NUMDYNAMICROUTING

Number of simultaneous dynamically routed messages per context. If
more than this many messages are being transferred, the additional
messages are deterministically routed. Dynamic routing can be faster
than deterministic routing. However, dynamically routed messages
require more storage to track their progress, hence the reason for this
option. Specify this number in increments of 64 (for example: 64, 128,
192, 256, ...).

64

PAMI_RGETINJFIFOSIZE The size, in bytes, of each remote get FIFO. These FIFOs store
64-byte descriptors. Each descriptor describes a memory buffer to be
sent on the torus, and is used to queue requests for data (remote
gets). Making this size larger might reduce torus network congestion
and reduce overhead. Making this size smaller might increase that
congestion, memory usage, and latency. PAMI messaging uses 10
remote get FIFOs per node.

 65536
(64 KB)

PAMI_RGETPACING Specifies whether to consider messages for pacing:
� 0 No messages are paced.
� 1 Messages are considered for pacing. The default setting

depends on the block size.
� 0 The block size is one rack (1024 nodes) or smaller.
� 1 The block size is larger than one rack.

See
description

Environment variable Description Default
value
Appendix D. MPI and CNK environment variables 133

PAMI_RGETPACINGDIMS Messages between nodes whose coordinates differ in more than this
many dimensions in ABCD are considered for pacing. For example,
node A has ABCD coordinates (0,0,0,0) and node B has (3,2,1,0).
They differ in three dimensions (A, B, and C). Specifying 2 means that
messages between these nodes are considered for pacing.

1

PAMI_RGETPACINGHOPS Messages between nodes that are more than this many hops apart on
the network are considered for pacing.

4

PAMI_RGETPACINGSIZE Messages exceeding this size in bytes are considered for pacing. 65536
(64 KB)

PAMI_ROUTING Specifies the PAMI network routing options to be used for
point-to-point messages that are large enough to use the rendezvous
protocol. That is, the messages are larger than the size specified for
PAMID_EAGER.
The complete syntax is
PAMI_ROUTING=[size][,[small][,[low:high][,[in][,out]]]]
When the source and destination nodes are on a network line (their
ABCDE coordinates differ in at most one dimension), deterministic
routing is always used. PAMI_ROUTING does not override this setting.

When the message size is less than or equal to "size", PAMI uses the
"small" network routing.

When the message size is larger than "size", PAMI uses the "flexibility
metric" to determine the network routing as follows:
The "low:high" range is the flexibility metric range. The flexibility metric
gauges the routing flexibility between a source node and destination
node. The values for "low" and "high" must be floating-point numbers
in the range 0.0 through 4.0. The low value must be less than or equal
to the high value. The PAMI computes the flexibility metric between the
source node and the destination node of a messaging transfer. The
metric is the sum of the flexibility of dimensions A, B, C, and D between
those nodes. The flexibility of a particular dimension is the ratio of the
number of hops between the source and the destination in that
dimension and the size of that dimension, and can range from 0.0
through 1.0.

The "in" value is the network routing to be used for a message transfer
between two nodes when their flexibility metric is between "low" and
"high", and the "out" value is the network routing otherwise. The values
for “in” and “out” and “small” might each be one of the following values.

0 Dynamic routing zone 0
1 Dynamic routing zone 1
2 Dynamic routing zone 2
3 Dynamic routing zone 3
4 Deterministic routing

See
Table D-4
on page 141

Environment variable Description Default
value
134 IBM System Blue Gene Solution: Blue Gene/Q Application Development

PAMID_ASYNC_PROGRESS This variable determines whether one or more communications
threads are started to make asynchronous progress. This variable is
required for maximum performance in message throughput cases:

0 No internal communications threads are started to assist with
making communications progress

1 One or more communications threads can assist with making
communications progress. Use this setting when high message
throughput is required.

The default value depends on the settings that are used:

0 The application is linked with the "legacy" MPICH libraries
(gcc.legacy, xl.legacy, xl.legacy.ndebug), MPI_Init_thread() is
called without MPI_THREAD_MULTIPLE, or the MPI_Init()
function is called.

1 The application is linked with the gcc, xl, and xl.ndebug MPICH
libraries and the MPI_Init_thread() function is called with
MPI_THREAD_MULTIPLE.

The default value cannot be changed when the application is linked
with the "legacy" MPICH libraries (gcc.legacy, xl.legacy, or
xl.legacy.ndebug). Attempting to set this environment variable causes
an application that is linked with a "legacy" MPICH library to display a
message and exit during the MPI_Init() function call.

See
description

PAMID_COLLECTIVE_name Turns on or off specific protocols for the MPI collective specified as
name. Possible values for collectives are ALLTOALL, ALLTOALLV,
ALLREDUCE, BARRIER, BCAST, SCATTER, SCATTERV, GATHER,
GATHERV, ALLGATHER, ALLGATHERV, SCAN, and REDUCE.
The MPICH option can be used to turn off all optimizations for a
specific collective and use the MPICH point-to-point protocol. For
many MPI_collective operations, this setting can cause poor
performance on larger blocks.
For information about other options and the default values, use the
PAMID_VERBOSE=2 setting.
For some PAMID_COLLECTIVE_* environment variables, especially
PAMID_COLLECTIVE_ALLREDUCE, some optimized protocols only
work with specific parameters (such as data type, operation, or
message size) that are specified for the particular MPI_collective
invocation. Therefore, specifying a specific protocol on the
PAMID_COLLECTIVE_* environment variable might not work for a
given MPI_collective invocation. In that case, the MPICH protocol is
used instead. To find out which protocol was used for a specific
MPI_collective invocation, invoke the
MPIX_Get_last_algorithm_name() function immediately after the
MPI_collective invocation. For more information, see the mpix.h file.

See
description

PAMID_COLLECTIVES Controls whether optimized collectives are used. The possible values
are:
0 Optimized collectives are not used. Only MPICH point-to-point

based collectives are used.
1 Optimized collectives are used.

1

Environment variable Description Default
value
Appendix D. MPI and CNK environment variables 135

PAMID_CONTEXT_MAX This variable sets the maximum allowable number of contexts.
Contexts are a method of dividing hardware resources among a
Parallel Active Messaging Interface (PAMI) client (for example, MPI) to
set how many parallel operations can occur at one time. Contexts are
similar to channels in a communications system. The practical
maximum is usually 64 contexts per node.
The default value depends on the number of processes per node and
the settings that are used:

1 The application is linked with the "legacy" MPICH libraries
(gcc.legacy, xl.legacy, xl.legacy.ndebug), the MPI_Init_thread()
function is called without MPI_THREAD_MULTIPLE, or the
MPI_Init() function is called.

1 The application is linked with the gcc, xl, and xl.ndebug MPICH
libraries and the MPI_Init_thread() function is called with
MPI_THREAD_MULTIPLE.

The default value cannot be changed when the application is linked
with the "legacy" MPICH libraries (gcc.legacy, xl.legacy, or
xl.legacy.ndebug). Attempting to set this environment variable causes
an application that is linked with a "legacy" MPICH library to display a
message and exit during the MPI_Init() function call.

See
description

PAMID_CONTEXT_POST This variable must be enabled to allow parallelism of multiple contexts.
It might increase latency. Enabling this variable is the only method to
allow parallelism between contexts:

0 Only one parallel communications context can be used. Each
operation runs in the application thread.

1 Multiple parallel communications contexts can be used. An
operation is posted to one of the contexts, and communications for
that context are driven by communications threads.

The default value depends on the settings that are used:

0 The application is linked with the "legacy" MPICH libraries
(gcc.legacy, xl.legacy, xl.legacy.ndebug), the MPI_Init_thread()
function is called without MPI_THREAD_MULTIPLE, or the
MPI_Init() function is called.

1 The application is linked with the gcc, xl, and xl.ndebug MPICH
libraries and MPI_Init_thread() is called with
MPI_THREAD_MULTIPLE.

The default value cannot be changed when the application is linked
with the "legacy" MPICH libraries (gcc.legacy, xl.legacy, or
xl.legacy.ndebug). Attempting to set this environment variable causes
an application that is linked with a "legacy" MPICH library to display a
message and exit during the MPI_Init() function call.

See
description

Environment variable Description Default
value
136 IBM System Blue Gene Solution: Blue Gene/Q Application Development

PAMID_DISABLE_INTERNAL
_EAGER_TASK_LIMIT

Overrides the default job size at which point the eager protocols are
disabled for internal MPI operations. This override has the same effect
as specifying the environment variable:

PAMID_PT2PT_LIMITS=::::0:0:0:0

This environment variable is processed before the PAMID_EAGER or
PAMID_RZV, PAMID_EAGER_LOCAL or PAMID_RZV_LOCAL,
PAMID_SHORT, and PAMID_PT2PT_LIMITS environment variables.

512k

PAMID_EAGER_LOCAL,
PAMID_RZV_LOCAL

Sets the cutoff value for the switch to the rendezvous protocol when
the destination rank is local. The two options are identical. This
variable takes an argument, in bytes, to switch from the eager protocol
to the rendezvous protocol for point-to-point messaging. The default
value effectively disables the eager protocol for local transfers
because the default value for PAMID_EAGER_LOCAL is less than the
default value for PAMID_SHORT.
The 'K' and 'M' multipliers can be used in the value. For example, "16K"
or "1M" can be used.

4097 bytes

PAMID_EAGER, PAMID_RZV Sets the cutoff for the switch to the rendezvous protocol. These
options are identical. This variable takes an argument, in bytes, to
switch from the eager protocol to the rendezvous protocol for
point-to-point messaging. Increasing the limit might help for larger
blocks and if most of the communication is with the nearest neighbor.
The 'K' and 'M' multipliers can be used in the value. For example, "16K"
or "1M" can be used.

4097 bytes

Environment variable Description Default
value
Appendix D. MPI and CNK environment variables 137

PAMID_PT2PT_LIMITS Specify all point-to-point limit overrides. This environment variable is
processed after the PAMID_EAGER or PAMID_RZV,
PAMID_EAGER_LOCAL or PAMID_RZV_LOCAL, and
PAMID_SHORT environment variables.
The entire point-to-point limit set is determined by three Boolean
configuration values:
� 'is non-local limit' versus 'is local limit'
� 'is eager limit' versus 'is immediate limit'
� 'is application limit' versus 'is internal limit'
The point-to-point configuration limit values are specified in order and
are delimited by ':' characters. If a value is not specified for a given
configuration, the limit is not changed. There is no requirement to
specify all eight configuration values. However, to set the last (eighth)
configuration value, the previous seven configurations must be listed.
The 'k', 'K', 'm', and 'M' multipliers can be specified. For example:

PAMID_PT2PT_LIMITS=":::::::10k"

The configuration entries can be described as:
0 remote eager application limit
1 local eager application limit
2 remote immediate application limit
3 local immediate application limit
4 remote eager internal limit
5 local eager internal limit
6 remote immediate internal limit
7 local immediate internal limit

The following example show how the PAMID_PT2PT_LIMITS variable
can be used.
� "10K" sets the application internode eager (the "normal" eager

limit)
� "10240::64" sets the application internode eager and immediate

limits
� "::::0:0:0:0" disables 'eager' and 'immediate' for all internal

point-to-point limits
This environment variable does not override any point-to-point limits
by default.

If no other point-to-point limit environment variables are used, and if
the job size is less than
PAMID_DISABLE_INTERNAL_EAGER_TASK_LIMIT, the effective
default value is:

4097:4097:113:113:2049:64:113:113

If no other point-to-point limit environment variables are used, and if
the job size is not less than
PAMID_DISABLE_INTERNAL_EAGER_TASK_LIMIT, the effective
default value is:

4097:4097:113:113:0:0:0:0

See
description

Environment variable Description Default
value
138 IBM System Blue Gene Solution: Blue Gene/Q Application Development

PAMID_RMA_PENDING Maximum outstanding Remote Memory Access (RMA) requests.
Limits the number of PAMI_Request objects allocated by MPI
one-sided (also known as RMA) operations.
The 'K' and 'M' multipliers can be used in the value. For example, "16K"
or "1M" can be used.

1000

PAMID_SHMEM_PT2PT Determines whether intranode point-to-point communication uses the
optimized shared memory protocols:

0 Optimized shared memory protocols are not used.
1 Optimized shared memory protocols are used.

1

PAMID_SHORT Sets the cutoff for the switch to the eager protocol. This variable takes
an argument, in bytes, to switch from the short protocol to the eager
protocol for point-to-point messaging. If a value greater than 113 bytes
is specified, 113 bytes are used.
The 'K' and 'M' multipliers can be used in the value. For example, "16K"
or "1M" can be used.

113 bytes

PAMID_STATISTICS Turns on the printing of statistics for the message layer such as the
maximum receive queue depth. Possible values:

0 No statistics are printed.
1 Statistics are printed.

0

PAMID_THREAD_
MULTIPLE

Specifies the messaging execution environment. It specifically selects
whether there can be multiple independent communications occurring
in parallel, driven by internal communications threads:

0 The application threads drive the communications. No additional
internal communications threads are used. This setting is
equivalent to specifying PAMID_ASYNC_PROGRESS=0,
PAMID_CONTEXT_POST=0, PAMID_CONTEXT_MAX=1.

1 There can be multiple independent communications occurring in
parallel, driven by internal communications threads. This setting is
equivalent to specifying PAMID_ASYNC_PROGRESS=1,
PAMID_CONTEXT_POST=1, PAMID_CONTEXT_MAX1.

The default value depends on the settings that are used:

0 The application is linked with the "legacy" MPICH libraries
(gcc.legacy, xl.legacy, xl.legacy.ndebug), or the MPI_Init_thread()
function is called without MPI_THREAD_MULTIPLE, or the
MPI_Init() function is called.

1 The application is linked with the gcc, xl, and xl.ndebug MPICH
libraries and the MPI_Init_thread() function is called with
MPI_THREAD_MULTIPLE.

The default value cannot be changed when the application is linked
with the "legacy" MPICH libraries (gcc.legacy, xl.legacy, or
xl.legacy.ndebug). Attempting to set this environment variable causes
an application that is linked with a "legacy" MPICH library to display a
message and exit during the MPI_Init() function call.

See
description

Environment variable Description Default
value
Appendix D. MPI and CNK environment variables 139

Table D-2 shows the default values for the COMMAGENT_RGETPACINGMAX environment
variable.

Table D-2 Default values for the COMMAGENT_RGETPACINGMAX variable

Table D-3 shows the default values for the COMMAGENT_RGETPACINGSUBSIZE
environment variable. These values vary depending on the size of the block where the job is
being run.

Table D-3 Default settings for the COMMAGENT_RGETPACINGSUBSIZE variable

PAMID_VERBOSE Provides debugging information during MPI_Abort() and during
various MPI function calls. Some settings affect performance.
To simplify debugging, set this variable to 1 for all applications:

0 No additional information is provided.
1 Print summary information during the MPI_Init() function call on

rank 0. Use this setting to simplify debugging. It only impacts
performance by using the MPI_Init() function to print the
information. A small amount of text is printed, including the
PAMID_, PAMI_, MUSPI_, COMMAGENT_, and BG_ environment
variables and other variables that the user specifies. The MPI_Init()
function does not verify that variable names are specified correctly.

2 Print summary information for collective operations and print
additional information for point-to-point. This information can be
useful when debugging which collective is being used on a
communicator. Approximately one line of output per rank per
communicator is created, and one line of output per rank of
point-to-point send statistics are provided on finalize. This setting
can affect the performance of routines that are typically not timed
(for example, MPI_Comm_create, MPI_Finalize, and so on).

3 Print detailed information. This setting generates extensive
information when used with large numbers of ranks.

0

Environment variable Description Default
value

Block size (racks) COMMAGENT_RGETPACINGMAX value

Racks < 2 65536

2 racks < 4 65536

4 racks < 8 32768

8 racks < 16 24576

16 racks < 32 24576

32 racks < 48 24576

48 racks < 64 24576

64 racks < 80 24576

80 racks < 96 24576

96 racks 24576

Block size (racks) COMMAGENT_RGETPACINGSUBSIZE value

Racks < 2 16384
140 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Table D-4 shows the default values for the PAMI_ROUTING environment variable. These
values vary depending on the size of the block where the job is being run.

Table D-4 Default values for the PAMI_ROUTING environment variable

2 racks < 4 16384

4 racks < 8 8192

8 racks < 16 8192

16 racks < 32 8192

32 racks < 48 8192

48 racks < 64 8192

64 racks < 80 8192

80 racks < 96 8192

96 racks 8192

Block size (racks) COMMAGENT_RGETPACINGSUBSIZE value

Block size Size Small Flexibility
metric range,
low - high

Routing when
in range

Routing
when out of
range

32 nodes < 64 65536 4 1.5 - 3.5 3 3

64 nodes < 128 65536 4 1.5 - 3.5 3 3

128 nodes < 256 65536 4 1.5 - 3.5 3 3

256 nodes < 512 65536 4 1.5 - 3.5 3 3

512 nodes < 1024 65536 4 1.5 - 3.5 3 3

1 racks < 2 65536 4 1.5 - 3.5 2 0

2 racks < 4 65536 4 1.5 - 3.5 3 0

4 racks < 8 65536 4 1.5 - 3.5 3 0

8 racks < 16 65536 4 1.5 - 2.5 3 0

16 racks < 32 65536 4 1.3 - 3.0 3 0

32 racks < 48 65536 4 1.3 - 3.0 3 0

48 racks < 64 65536 4 1.3 - 3.0 3 0

64 racks < 80 65536 4 .75 - 3.0 3 0

80 racks < 96 65536 4 .75 - 3.0 3 0

96 racks 65536 4 .75 - 3.0 3 0
Appendix D. MPI and CNK environment variables 141

Compute Node Kernel environment variables

Several environment variables affect the runtime characteristics of the Compute Node Kernel
(CNK). If these variables are set incorrectly, programs might not run. None of these
environment variables are required to be set for the CNK to work.

Table D-5 lists the CNK environment variables.

Table D-5 MPI environment variables

Environment variable Description Default
value

BG_AGENTHEAPSIZE The heap size in MB that is allocated to the application agent process.
The default value is 16 if an application agent is defined in the
BG_APPAGENT environment variable. Otherwise, it is 0.

16 or 0.
See
description.

BG_AGENTCOMMHEAPSIZE The heap size in MB that is allocated to the application agent that is
reserved for use by the messaging software.
The default value is 16 if an application agent for messaging is not
disabled by BG_APPAGENTCOMM=DISABLE. Otherwise, it is 0.

16 or 0.
See
description.

BG_APPAGENT The path to an application agent program. The default is no
application agent.

See
description

BG_APPAGENTCOMM The path to an application agent that is reserved for use by the
messaging software. To disable the default PAMI application agent,
specify DISABLE.
The default value is /bgsys/drivers/ppcfloor/agents/bin/comm.elf

See
description

BG_COREDUMPBINARY Specifies the MPI ranks for which a binary core file is generated
rather than a lightweight core file. This type of core file can be used
with the GNU Project Debugger (GDB) but not the Blue Gene/Q
Coreprocessor utility. If this variable is not set, all ranks generate a
lightweight core file. To generate a binary core file, set the variable to
a comma-separated list of the ranks. To have all ranks generate a
binary core file, set the variable to “*” (an asterisk).

See
description

BG_COREDUMPDISABLED Boolean that specifies whether core files are created:

0 Enable creation of core files.
1 Disable creation of core files.

0

BG_COREDUMPFILEPREFIX Sets the file name prefix of the core files. The MPI task number is
appended to this prefix to form the file name.

“core.”

BG_COREDUMPFPR Boolean that controls whether register information is included in the
core files. BG_COREDUMP_FPR controls output of floating-point
registers (FPRs):

0 Disable this setting.
1 Enable this setting.

1

BG_COREDUMPGPR Boolean that controls whether register information is included in the
core files. BG_CORE_DUMPGPR controls integer general-purpose
registers (GPRs):

0 Disable this setting.
1 Enable this setting.

1

142 IBM System Blue Gene Solution: Blue Gene/Q Application Development

BG_COREDUMPINTCOUNT Boolean that controls whether the number of interrupts handled by
the node is included in the core file:

0 Disable this setting.
1 Enable this setting.

1

BG_COREDUMPMAXNODES Specifies the maximum number of nodes that generate core files for
abnormally terminating processes. This variable can be used to limit
the number of core files generated in cases when most of the
processes in a very large block abnormally terminate.

2048

BG_COREDUMPONERROR Boolean that controls the creation of core files when the application
exits with a nonzero exit status. This variable is useful when the
application performed an exit(1) operation and the cause and location
of the exit(1) is not known:

0 Disable this setting.
1 Enable this setting.

0

BG_COREDUMPONEXIT Boolean that controls the creation of core files when the application
exits. This variable is useful when the application performed an exit()
operation and the cause and location of the exit() operation is not
known. To enable this setting, the value must be set to 1:

0 Disable this setting.
1 Enable this setting.

0

BG_COREDUMPPATH Sets the directory for the core files.
The default value is the current working directory.

See
description.

BG_COREDUMPPERS Boolean that controls whether the node personality information (XYZ
dimension location, memory size, and so on) is included in the core
files:

0 Disable this setting.
1 Enable this setting.

1

BG_COREDUMPRANKS Specifies a comma-separated list of ranks to generate a core file
when the job ends. The ranks specified in this list are not prevented
from being generated by any other BG_COREDUMP environment
variable.

See
description.

BG_COREDUMPREGS Boolean that controls whether register information is included in the
core files. BG_COREDUMPREGS is the master switch:

0 Disable this setting.
1 Enable this setting.

1

BG_COREDUMPSPR Boolean that controls whether register information is included in the
core files. BG_COREDUMP_SPR controls the output of
special-purpose registers (SPRs):

0 Disable this setting.
1 Enable this setting.

1

Environment variable Description Default
value
Appendix D. MPI and CNK environment variables 143

BG_COREDUMPSTACK Boolean that controls whether the application stack addresses are to
be included in the core file:

0 Disable this setting.
1 Enable this setting.

0

BG_COREDUMPTLBS Boolean that controls whether the TLB layout at the time of the core
is to be included in the core file:

0 Disable this setting.
1 Enable this setting.

1

BG_MAPCOMMONHEAP This option obtains a uniform heap allocation between the processes;
however, the trade off is that memory protection between processes
is not as stringent. In particular, when using the option, it is possible
to write into another process’ heap. Normally this would cause a
segmentation violation, but with this option set, the protection
mechanism is disabled to provide a balanced heap allocation. The
processes have independent heaps and system calls return EFAULT
if an address is passed in that is out-of-bounds.

0

BG_MAPNOALIASES This option disables long-running alias mode. This feature is used for
some TM or SE configurations.

0

BG_MAPALIGN16 This option changes the memory alignment restrictions for ppn = 16,
ppn = 32, and ppn = 64. With the option enabled, the physical
memory for each process begins on a 16 MB boundary, as opposed
to a power-of-2 size. This has the potential for better memory
mappings for ppn 16. By default, BG_MAPALIGN16 is enabled.

1

BG_MAXALIGNEXP The maximum number of floating-point alignment exceptions that the
CNK can handle. If the maximum is exceeded, the application core
dumps:

0 No alignment exceptions are processed.
-1 All alignment exceptions are processed.
<n> n alignment exceptions are processed

1000

BG_PERSISTMEMRESET Boolean that indicates that the persistent memory region must be
cleared before the job starts:

0 Disable this setting.
1 Enable this setting.

0

BG_PERSISTMEMSIZE Size, in MB, of the persistent memory region. 0

BG_POWERMGMTDUR The number of microseconds spent in one proactive power
management idle loop.

0

BG_POWERMGMTPERIOD The number of microseconds between proactive power management
idle loops. When 0, power management is disabled.

0

Environment variable Description Default
value
144 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Setting environment variables

The simplest method to set environment variables is to specify them on the command line
when running the runjob command. For example, to set environment variable “XYZ” to value
“ABC,” call the runjob command as the following example shows:

$ runjob --envs XYZ=ABC myprogram.rts

To send multiple environment variables, separate them with a space, for example:

$ runjob --envs XYZ=ABC DEF=123 myprogram.rts

BG_SHAREDMEMSIZE Size, in MB, of the shared memory region. To increase the default
value by a specific number of MB, specify a '+' prefix with the value.
To replace the default value with a new value, omit the '+'.

The default shared memory size is chosen by the CNK based on the
known requirements of the current configuration:

If ranks-per-node = 1, the shared memory size defaults to 32 MB.
If ranks-per-node > 2, the shared memory size defaults to 64 MB.

See
description.

BG_STACKGUARDENABLE Boolean that indicates whether the CNK creates guard pages. If the
variable is specified, a value must be set to either 0 or 1:

0 Do not create guard pages.
1 Create guard pages.

0

BG_STACKGUARDSIZE The size, in bytes, of the main() function stack guard area. If the
specified value is greater than zero but less than 512, 512 bytes are
used.

4096

BG_SYSIODPOSIXMODE Run I/O operations with POSIX rules:

0 I/O operation that is initiated from a compute node can cause
multiple I/O operations on the I/O node.

1 Each I/O operation that is initiated from a compute node
completes atomically.

0

BG_THREADLAYOUT Specifies the algorithm that the CNK uses to select a hardware thread
during software thread creation:
1 Assign software threads across the cores within the process

before assigning software threads to additional hardware threads
within a core.

2 Assign software threads to all hardware threads within a core
before assigning software threads on other cores.

1

BG_THREADMODEL Activates a specific thread model:

0 Operate in the native Blue Gene/Q thread model, allowing
multiple pthreads per hardware thread.

1 Allow only one application pthread per hardware thread.
2 For V1R2M0 and later releases, enable the extended thread

affinity control.

0

Environment variable Description Default
value
Appendix D. MPI and CNK environment variables 145

146 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Appendix E. Using GNU profiling

This appendix describes the GNU profiling function that is provided in the GNU toolchain for
Blue Gene/Q.

For basic documentation about the GNU toolchain profiling tools, see the gprof
documentation on the following web site:

http://sourceware.org/binutils/docs-2.21/gprof/index.html

The path for the Blue Gene/Q gprof utility is
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gprof.

E

© Copyright IBM Corp. 2013. All rights reserved. 147

http://sourceware.org/binutils/docs-2.21/gprof/index.html

Using the Blue Gene/Q gmon tool

The basic gmon support is described in the man pages for the GNU toolchain:

http://gcc.gnu.org/

Specifying which ranks generate gmon.out files

Blue Gene/Q applications typically run simultaneously on multiple ranks. The execution path
through the code, and therefore the profiling data collected, might vary depending on the
rank. A separate gmon.out file is generated for each rank in the program. The gmon.out files
are named gmon.out.N where N is the rank where the program was run.

On large blocks, many gmon.out files might be written. It is normally not necessary to write a
file for each rank because many of the files contain similar or identical information. The
default setting is to generate gmon.out files only for profiling data collected on ranks 0 - 31.
This setting reduces I/O usage. To generate gmon.out files for a different set of ranks, use the
BG_GMON_RANK_SUBSET environment variable to specify which ranks have gmon.out
files generated. The variable can be set as shown in Example E-1.

Example E-1 Setting the BG_GMON_RANK_SUBSET variable

BG_GMON_RANK_SUBSET=N /* Only generate the gmon.out file for rank N. */

BG_GMON_RANK_SUBSET=N:M /* Generate gmon.out files for all ranks from N to M. */

BG_GMON_RANK_SUBSET=N:M:S /* Generate gmon.out files for all ranks from N to M.
Skip S; 0:16:8 generates gmon.out.0, gmon.out.8, gmon.out.16 */

Functions to disable gmon.out files for some nodes

The Blue Gene/Q toolchain includes the mondisable() function. This function can be called
from the user program to prevent writing out a gmon.out file on the node from which it is
called. This function can be used to reduce the number of gmon.out files that are generated
on a large block. It can be especially useful if it is known that many nodes generate the same
or similar profiling data.

Profiling for threads

The base GNU toolchain does not provide support for profiling on threads. The patches that
are provided for the Blue Gene/Q toolchain include support for profiling on threads. These
patches include various methods to enable and disable profiling on a per-thread basis.

Profiling with the GNU toolchain

Profiling tools provide information about potential bottlenecks in the program. They help
identify functions or sections of the code that might become good candidates to optimize.
When using gmon profiling, two levels of profiling information can be generated: machine
instruction level or full level. Select options based on the required level of detail and the
acceptable amount of overhead. As with any type of performance data collection, monitoring
and saving of performance information uses system resource and affects the resulting
performance data. The amount of additional resource, or profiling overhead, is greater with
148 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://gcc.gnu.org/

some options than with others. When compiling with the GNU compilers or the IBM XL
compilers, enable profiling by adding -pg to the compile flags.

Using timer tick (machine instruction level) profiling

This level of profiling provides timer tick profiling information at the machine instruction level.
Profiling data collection is based on the SIGPROF timer. The timer is enabled in the program.
When the timer expires, the program counter for the executing instruction is updated. As the
program runs, the data collection provides a sample of instruction addresses that are
executed by the program. To enable this type of profiling and no other performance data
collection, add the -pg option on the link command but do not include it on the compile
commands. This level of profiling adds the least amount of performance collection overhead.
It provides profile information based on instruction addresses but does not provide call graph
or call count information.

In the base GNU toolchain, threads are not profiled by default. However, the Blue Gene/Q
system includes support for thread profiling. Thread profiling is not enabled by default. To
enable thread profiling, link the program with the -pg option and perform one of the following
steps:

� Set the BG_GMON_START_THREAD_TIMERS environment variable on the runjob
command.

Set this environment variable to “all” to enable the SIGPROF timer on all threads created
with the pthread_create() function.

When profiling an MPI application, additional threads called comm threads might be
created to assist with the MPI function. Set this environment variable to “nocomm” to
enable the SIGPROF timer on all threads except the extra threads that are created to
support MPI.

� Add a call to the gmon_start_all_thread_timers() function to the program so that it is called
from the main thread. This setting configures the SIGPROF timer on all threads that are
created with pthread_create after the point where this call is made. Threads that are
created before the call to the gmon_start_all_thread_timers() function are not profiled.

� Add a call to the gmon_thread_timer(int start) function from the thread to be profiled. To
start the thread time, call this function with 1 as an argument. To stop the thread timer, call
this function with the value 0.

The prototypes for these gmon functions are in sys/gmon.h in the Blue Gene/Q toolchain.

Collecting call count information

In addition to instruction profiling, call count information can also be collected. To collect this
type of data, all files must be compiled and linked with the -pg option. This option provides
profiling information based on the SIGPROF timer as described in “Using timer tick (machine
instruction level) profiling” on page 149 and call graph information and procedure call counts.
This level of performance data collection introduces the most overhead. The call count
information is collected on all threads that execute code that was compiled with the -pg
option. It is not affected or controlled by the thread profiling switches that are described in this
appendix. When higher levels of compiler optimization are used, the statement mappings and
procedure calls might not appear as expected due to inlining, code movement, scheduling,
and other optimizations that are performed by the compiler. Programs built this way collect
call count information for all threads.
Appendix E. Using GNU profiling 149

To also collect profiling information for threads, thread-level profiling must be enabled with
one of the methods that are described in “Using timer tick (machine instruction level) profiling”
on page 149.
150 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Appendix F. Hardware performance counters

The Blue Gene/Q system has multiple hardware performance events and counters. To tune
performance and monitor hardware performance events, use the Blue Gene/Q Hardware
Performance Monitoring (BGPM) API or another tool that uses it. This section describes the
BGPM API and the industry-standard Performance Application Programming Interface
(PAPI-C).

F

© Copyright IBM Corp. 2013. All rights reserved. 151

Blue Gene Hardware Performance Monitoring API

The native BGPM API implements a C programming interface for the Blue Gene/Q universal
performance counter hardware. You can use BGPM API functions to program, control, and
access counters and events from the four integrated hardware units and the CNK software
counters.

The BGPM API documentation is in HTML and is stored in the driver directory at
/bgsys/drivers/ppcfloor/bgpm/docs/html/index.html. It is also available in the Blue Gene
Navigator Knowledge Center.

The documentation includes:

� An overview and quick start example.

� Extended overview pages about units and limitations.

� A reference section with the API calls, event tables, instruction operation codes and
instruction groups, tips, and some examples.

The BGPM API operation is fairly low level. The API can be used to abstract the hardware
collections into manageable events and units. It does not include constructs such as
formatted reports or direct profiling. However, it does provide functions on which these
constructs can be built. These functions include event sets, event information queries,
overflow detection, handler routines, and coordinated multiplexing. The BGPM API includes
the following features:

� There are five types of units:

– The Punit counters, which control events and counters that are related to the
hardware-threaded CPU

– The L2 unit

– The I/O unit

– The Network unit

– The CNK unit counters and events

� All counters are 64 bits.

� There are three major modes of operation:

– Software distributed mode, where each software thread configures and controls its own
Punit counters

– Hardware distributed mode, where a single software thread can configure and
simultaneously control all Punit counters for all cores

– Low latency mode. This mode provides faster start and stop access to the Punit
counters. However, the Punit counters have only a 14-bit capacity.

� The software distributed mode additional support for:

– Interrupt on overflow. The Punit, L2, and I/O units support interrupt on overflow. This
support can be used to register and set thresholds for the counter value and to call an
overflow handler when the threshold value is reached.

– Punit event multiplexing. Multiplexing allows more events to be configured than can be
simultaneously collected. Event collection is time-sliced based on a CPU cycle
threshold or manually by the user instrumentation.

– Abstract hardware thread counters. These counters are used to present a software
thread context (Punit counters are stopped and restarted when the thread is swapped
in or out) in cooperation with the CNK.
152 IBM System Blue Gene Solution: Blue Gene/Q Application Development

� The Network unit provides counters for each of 11 separate network links per node and
events for filtering based on types of transfers, including events to allow calculation of use
and receive queue length.

� The separate units are generally programmed and controlled separately, but use a
common set of BGPM API functions.

� There are 405 base events. Many of these events can be varied with user-selectable
attributes.

� All cores and hardware threads can be gathered simultaneously. The CPU core events
can be programmed to use 6, 12, or 24 counters for a thread. The number of counters
depends on the number of active hardware threads per core.

Performance Application Programming Interface

The PAPI-C library is an industry-standard API that is designed to provide a consistent
interface and methodology for using the performance counter hardware. It can be used to
interface with the BGPM API to control and access the performance counters.

For more information about the PAPI-C interface, including the documentation and toolkit, see
the PAPI website:

http://icl.cs.utk.edu/papi

The PAPI-C library must be downloaded, built, and installed separately from the Blue Gene/Q
drivers. For information about installing the library, see the PAPI release installation notes in
the installation directory. The path is papi/INSTALL.txt.

The PAPI-C features that can be used for the Blue Gene/Q system include:

� A standard instrumentation API that can be used by other tools.

� A collection of standard preset events, including some events that are derived from a
collection of events. The BGPM API native events can also be used through the PAPI-C
interfaces.

� Support for both a C and a Fortran instrumentation interface.

� Support for separate components for each of the BGPM API unit types. The Punit counter
is the default PAPI-C component. The L2, I/O, Network, and CNK units require separate
component instances in the PAPI-C interface.
Appendix F. Hardware performance counters 153

http://icl.cs.utk.edu/papi

154 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Appendix G. Requirements for C++
programming in a failover
environment

In a failover configuration, special consideration must be taken for C++ applications that use
the Standard Input/Output facilities of the C++ Standard Library. During a failover event, the
standard output and standard error streams are closed by the system software. The error
state flags must be cleared by the application afterwards to resume using these streams.
Example G-1 shows one method to clear the error state flags.

Example G-1

if (!(cout << "Hello World" << endl)) {
 cout.clear();
}

If the error state is left in the set state, standard output or standard error information is lost
because the error state flags for the stream are on.

G

© Copyright IBM Corp. 2013. All rights reserved. 155

156 IBM System Blue Gene Solution: Blue Gene/Q Application Development

ronyms
ABI Application binary interface

ADI Abstract device interface

ALU Arithmetic logic unit

API Application programming interface

ASIC Application-specific integrated
circuit

BIOS Basic input/output system

CDTI Code Development and Tools
Interface

CIOD Control and I/O daemon

DDR Double data RAM

DMA Direct memory access

ELF Executable and linking format

EPL Eclipse Public License

ESSL Engineering and Scientific
Subroutine Library

FIFO First-in, first-out queue

FPR Floating-point register

FPU Floating-point unit

GCC GNU Compiler Collection

GDB GNU Project Debugger

GLIBC GNU C Library

GPFS General Parallel File System

GPR General-purpose register

HPC High-performance computing

HTC High-throughput computing

INF Infinity

IP Internet protocol

L1p L1 prefetcher

LLCS Low Level Control System

MASS Mathematical Acceleration
Subsystem

MMCS Midplane Management Control
System

MPI Message Passing Interface

MU Messaging unit

MUSPI Message unit system programming
interface

NAN Not a number

NFS Network File System

NPTL Native POSIX Thread Library

OSS Open Source Software

Abbreviations and ac
© Copyright IBM Corp. 2013. All rights reserved.
OpenMP Open multi-processing

PAMI Parallel Active Messaging Interface

PID Process identifier

POSIX Portable Operating System
Interface

QCD Quantum chromodynamics

QPX Quad-processing extensions

RAM Random access memory

RAS Reliability, availability, and
serviceability

ROM Read-only memory

RPM RPM package manager

SIMD Single instruction, multiple data

SMP Symmetrical multiprocessing

SPI System programming interface

SPR Special-purpose registers

TCP Transmission Control Protocol

TGID Thread group identifier

TID Thread identifier

UDP User Datagram Protocol
 157

158 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get IBM Redbooks” on
page 160. Note that some of the documents referenced here might be available in softcopy
only:

� IBM System Blue Gene Solution: Blue Gene/Q Code Development and Tools Interface,
REDP-4659

� IBM System Blue Gene Solution: Blue Gene/Q Hardware Overview and Installation
Planning, SG24-7872-00

� IBM System Blue Gene Solution: Blue Gene/Q Hardware Installation and Maintenance
Guide, SG24-7974-00

� IBM System Blue Gene Solution: Blue Gene/Q Safety Considerations, REDP-4656

� IBM System Blue Gene Solution: Blue Gene/Q System Administration, Manual,
SG24-7869-00

Other publications

These publications are also relevant as further information sources:

� General Parallel File System HOWTO for the IBM System Blue Gene/Q Solution,
SC23-6939-00

� Gropp, W. and Lusk, E. "Dynamic Process Management in an MPI Setting." 7th IEEE
Symposium on Parallel and Distributed Processing. p. 530, 1995:

http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf

� Gropp, William; Huss-Lederman, Steven; Lumsdaine, Andrew; Lusk, Ewing; Nitzberg, Bill;
Saphir, William; Snir, Marc. MPI: The Complete Reference, Volume 2 - The MPI-2
Extensions. MIT Press, Cambridge, Massachusetts, 1998. ISBN 0-262-69216-3.

� Heyman, J. "Recommendations for Porting Open Source Software (OSS) to Blue Gene/P,"
white paper WP101152.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152

� Quinn, Michael J. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New
York, 2004. ISBN 0-072-82256-2.

� Snir, Marc; Otto, Steve; Huss-Lederman, Steven; Walker, David; Dongarra, Jack. MPI: The
Complete Reference, 2nd Edition, Volume 1. MIT Press, Cambridge, Massachusetts,
1998. ISBN 0-262-69215-5.
© Copyright IBM Corp. 2013. All rights reserved. 159

http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152

Online resources

These websites are also relevant as further information sources:

� Compiler-related topics:

– IBM XL C and C++ compilers

http://www.ibm.com/software/awdtools/xlcpp/

– XL Fortran Advanced Edition for Blue Gene

http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/

– XL Fortran Compilers

http://www.ibm.com/software/awdtools/fortran/

� Debugger-related topics:

– GDB: The GNU Project Debugger

http://www.gnu.org/software/gdb/gdb.html

– GDB documentation:

http://www.gnu.org/software/gdb/documentation/

� Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL

http://www.ibm.com/systems/software/essl/index.html

� GCC, the GNU Compiler Collection

http://gcc.gnu.org/

� General Parallel File System

http://www.ibm.com/systems/software/gpfs/

� Intel MPI Benchmarks is formerly known as "Pallas MPI Benchmarks."

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

� Mathematical Acceleration Subsystem

http://www.ibm.com/software/awdtools/mass/index.html

� Message Passing Interface Forum

http://www.mpi-forum.org/

� MPI Performance Topics

http://www.llnl.gov/computing/tutorials/mpi_performance/

� The OpenMP API Specification:

http://www.openmp.org

� Danier, CJ, "What is Direct Memory Access (DMA)?"

http://cnx.org/content/m11867/latest/

How to get IBM Redbooks

You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this website:

http://www.redbooks.ibm.com
160 IBM System Blue Gene Solution: Blue Gene/Q Application Development

http://www.ibm.com/software/awdtools/xlcpp/
http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/
http://www.ibm.com/software/awdtools/fortran/
http://www.ibm.com/systems/software/essl/index.html
http://www.ibm.com/software/awdtools/mass/index.html
http://www.ibm.com/systems/software/gpfs/
http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/documentation/
http://gcc.gnu.org/
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi_performance/
http://www.openmp.org
http://cnx.org/content/m11867/latest/
http://www.redbooks.ibm.com

Help from IBM

IBM Support and downloads

http://www.ibm.com/support

IBM Global Services

http://www.ibm.com/services
 Related publications 161

http://www.ibm.com/support
http://www.ibm.com/services

162 IBM System Blue Gene Solution: Blue Gene/Q Application Development

References

1. The MPI Forum. The MPI message-passing interface standard. May 1995:

http://www.mcs.anl.gov/mpi/standard.html

2. OpenMP application programming interface (API):

http://www.openmp.org

3. GCC, the GNU Compiler Collection:

http://gcc.gnu.org/

4. Engineering and Scientific Subroutine Library (ESSL):

http://www.ibm.com/systems/software/essl/index.html

5. Snir, Marc, et. al. MPI: The Complete Reference, 2nd Edition, Volume 1. MIT Press,
Cambridge, Massachusetts, 1998. ISBN 0-262-69215-5.

6. Gropp, William, et. al. MPI: The Complete Reference, Volume 2 - The MPI-2 Extensions.
MIT Press, Cambridge, Massachusetts, 1998. ISBN 0-262-69216-3.

7. See note 1.

8. See note 2.

9. See note 3.

10.See note 4.

11.Ganier, C J. ‚”What is Direct Memory Access (DMA)?”

http://cnx.org/content/m11867/latest/

12.See note 1.

13.See note 2.

14.Quinn, Michael J. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New
York, 2004. ISBN 0-072-82256-2.

15.Snir, Marc, et. al. MPI: The Complete Reference, 2nd Edition, Volume 1. MIT Press,
Cambridge, Massachusetts, 1998. ISBN 0-262-69215-5.

16.Gropp, William, et. al. MPI: The Complete Reference, Volume 2 - The MPI-2 Extensions.
MIT Press, Cambridge, Massachusetts, 1998. ISBN 0-262-69216-3.
© Copyright IBM Corp. 2013. All rights reserved. 163

http://www.ibm.com/systems/software/essl/index.html
http://www-03.ibm.com/systems/p/software/essl.html
http://www.mcs.anl.gov/mpi/standard.html
http://www.openmp.org
http://gcc.gnu.org/
http://cnx.org/content/m11867/latest/

164 IBM System Blue Gene Solution: Blue Gene/Q Application Development

Index

A
A2 3, 15, 26–28, 53, 79, 83, 93
abstract device interface 67
addr2line utility 109–113
application binary interface 16
application-specific integrated circuit 10, 26
arithmetic logic unit 67
atomic operation 53

B
basic input/output system 11

C
Code Development and Tools Interface 105, 159
compute node 4–5, 7, 9–13, 16–17, 25, 54–56, 63, 73,
88, 90, 93, 95–96, 105–106, 122, 129, 142, 145
Compute Node Kernel 4, 9, 13, 25, 93, 129, 142
core file 112

D
debug server 105
direct memory access 11, 68, 160
double data RAM 27–28

E
end node 2, 6, 8, 54, 79, 87, 89–90, 92–96, 105–106, 111
Engineering and Scientific Subroutine Library 4, 11, 92,
160
environment variable 19, 29–30, 68, 84, 88, 90, 93, 95,
130–131, 133, 135–136, 139–142, 145, 148–149
executable and linking format 54, 88, 142

F
first-in, first-out queue 22, 130, 132–133
floating-point register 142
floating-point unit 6, 83, 97

G
gdbserver 105
gdbtool 107–108
General Parallel File System 4–5, 95, 159–160
general-purpose register 53
GNU C Library 4, 11, 17, 19, 59, 81, 83–84, 112
GNU Compiler Collection 4, 11, 16, 74–77, 80–82,
84–87, 93–95, 123, 126–127, 135–136, 139, 148, 160
GNU Project Debugger 4, 7, 81, 105–108, 142, 160

H
high-performance computing 56, 65
high-throughput computing 65
© Copyright IBM Corp. 2013. All rights reserved.
hwthread 122–123

I
I/O node 5, 8–10, 12, 14, 54, 56, 80, 87–88, 92–93,
95–96, 105–108, 122, 145
infinity 83
internet protocol 5, 105–108
ITSO xi

L
L1 prefetcher 26–28, 34, 63

M
Mathematical Acceleration Subsystem 92, 160
memory access 11, 139, 160
Message Passing Interface 4–6, 11, 15, 65–77, 87, 93,
97, 112, 116–119, 122–123, 125–126, 129–132,
135–136, 139–140, 142, 149, 155, 159–160
message unit system programming interface 66, 74, 130,
132, 140
messaging unit 63, 69, 130, 132–133
midplane 116
mmap 7, 29–30, 62, 64

N
Native POSIX Thread Library 4, 17
Network File System 5
not a number 83

O
Open multi-processing 4, 11, 15, 65–66, 73, 77, 83–84,
159–160
Open Source Software 159

P
Parallel Active Messaging Interface 66, 74, 88, 125–127,
130–134, 136, 139–142
Portable Operating System Interface 4, 17, 56, 62, 145
printf 111
process count 14
process identifier 16–17, 61–62, 64, 91, 108
procid 122–124
Python interpreter 96

Q
quad-processing extensions 72, 79, 81–83, 97–99
quantum chromodynamics 118

R
random access memory 11, 26
 165

Reliability, availability, and serviceability 4
reliability, availability, and serviceability 4
RPM package manager 6, 92
runjob 14–15, 30, 90–91, 97, 107, 123, 145

S
shared libraries 5, 83, 85, 87–88, 90, 96
single instruction, multiple data 6, 83, 97–98
sockets 5, 11, 56, 59–61
special-purpose registers 143
speculative thread 83
static libraries 85
symmetrical multiprocessing 26
system call 56
system programming interface 20, 34, 53, 56, 62–63, 66,
76, 122, 130

T
thread group identifier 17
thread identifier 16–17, 20, 64
torus 73
torus network 67
transactional memory 83
Transmission Control Protocol 5, 105

U
User Datagram Protocol 5
166 IBM System Blue Gene Solution: Blue Gene/Q Application Development

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

IBM
 System

 Blue Gene Solution: Blue Gene/Q Application Developm
ent

IBM
 System

 Blue Gene Solution: Blue
Gene/Q Application Developm

ent

IBM
 System

 Blue Gene Solution:
Blue Gene/Q Application
Developm

ent

 IBM
 System

 Blue Gene Solution: Blue Gene/Q Application Developm
ent

IBM
 System

 Blue Gene Solution:
Blue Gene/Q Application
Developm

ent

IBM
 System

 Blue Gene Solution:
Blue Gene/Q Application
Developm

ent

®

SG24-7948-01 ISBN 0738438235

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM System Blue Gene Solution
Blue Gene/Q
Application Development

Understand the Blue
Gene/Q programming
environment

See available parallel
programming
paradigms

Learn how to run and
debug programs

This IBM Redbooks publication is one in a series of IBM books written
specifically for the IBM System Blue Gene supercomputer, Blue
Gene/Q, which is the third generation of massively parallel
supercomputers from IBM in the Blue Gene series. This document
provides an overview of the application development environment for
the Blue Gene/Q system. It describes the requirements to develop
applications on this high-performance supercomputer.

This book explains the unique Blue Gene/Q programming environment.
This book does not provide detailed descriptions of the technologies
that are commonly used in the supercomputing industry, such as
Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP). References to more detailed information about
programming and technology are provided.

This document assumes that readers have a strong background in
high-performance computing (HPC) programming. The high-level
programming languages that are used throughout this book are C/C++
and Fortran95. For more information about the Blue Gene/Q system,
see “IBM Redbooks” on page 159.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Author
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	June 2013, Second Edition

	Chapter 1. System overview
	1.1 Blue Gene/Q environment overview
	1.2 Blue Gene/Q hardware overview
	1.3 Blue Gene/Q software overview
	1.3.1 System administration and management
	1.3.2 Compute Node Kernel and services
	1.3.3 I/O node kernel and services
	1.3.4 Message Passing Interface
	1.3.5 Compilers
	1.3.6 Application development and debugging

	Chapter 2 Kernel functionality
	2.1 Compute Node Kernel
	2.1.1 Stateless compute nodes
	2.1.2 Firmware

	2.2 Role of the I/O node kernel

	Chapter 3. Processes
	3.1 Importance of process count
	3.2 Process creation
	3.3 Processes per node
	3.4 Determining how many processes per node to use
	3.5 Specifying process count
	3.6 Support for 64-bit applications
	3.7 Object identifiers
	3.7.1 Process identifier
	3.7.2 Thread identifier
	3.7.3 Thread group identifier
	3.7.4 T coordinate

	3.8 Sub-node jobs
	3.9 Threading overview
	3.9.1 Hardware thread over-commitment

	3.10 Thread scheduler
	3.10.1 Thread preemption
	3.10.2 Thread yield
	3.10.3 Round-robin dispatch

	3.11 Thread affinity
	3.11.1 Breadth-first assignment
	3.11.2 Depth-first assignment
	3.11.3 Thread affinity control
	3.11.4 Setting affinity with the pthread attribute
	3.11.5 Setting affinity with the system call
	3.11.6 Extended thread affinity control

	3.12 Thread priority
	3.12.1 Setting priority through the pthread attribute
	3.12.2 Explicit setting of priority
	3.12.3 Hardware thread priority

	Chapter 4. Memory
	4.1 Memory system overview
	4.1.1 L1 prefetch cache overview
	4.1.2 L2 cache functional overview
	4.1.3 Boot eDRAM overview

	4.2 Memory management
	4.3 Memory protection
	4.4 Shared memory
	4.5 Persistent memory
	4.6 Compute node ramdisk
	4.7 Support for the /proc file system
	4.8 L1P prefetcher
	4.8.1 Linear stream prefetcher overview
	4.8.2 Perfect prefetcher overview
	4.8.3 L1P prefetcher API descriptions
	4.8.4 Performance considerations

	4.9 L2 atomic operations
	4.10 Speculative execution
	4.11 Support for dynamic linking
	4.12 Transactional memory

	Chapter 5. Compute Node Kernel interfaces
	5.1 Lightweight principles
	5.2 Kernel access
	5.2.1 Application programming interfaces
	5.2.2 System programming interface

	5.3 System calls

	Chapter 6. Parallel paradigms
	6.1 Programming model
	6.2 Blue Gene/Q MPI implementation
	6.2.1 High-performance network for efficient parallel execution
	6.2.2 Forcing MPI to allocate too much memory
	6.2.3 Not waiting for the MPI_Test function
	6.2.4 Flooding the network with messages
	6.2.5 Deadlocking the system
	6.2.6 Violating MPI buffer ownership rules
	6.2.7 Buffer alignment sensitivity

	6.3 Blue Gene/Q MPI extensions
	6.3.1 Changing class-route usage at run time
	6.3.2 Determining hardware properties

	6.4 MPI functions
	6.5 Compiling MPI programs on the Blue Gene/Q system
	6.6 OpenMP
	6.6.1 OpenMP implementation for Blue Gene/Q

	6.7 Multiple Program, Multiple Data

	Chapter 7. Developing applications with Blue Gene/Q compilers
	7.1 Programming environment overview
	7.2 Compilers for the Blue Gene/Q system
	7.2.1 IBM XL compilers
	7.2.2 GNU Compiler Collection
	7.2.3 Python interpreter
	7.2.4 Toolchain tools

	7.3 Compiling and linking applications on the Blue Gene/Q system
	7.4 Compiler options specific to the Blue Gene/Q system
	7.4.1 Options for the Blue Gene/Q system
	7.4.2 Unsupported compiler options

	7.5 Support for pthreads and OpenMP
	7.5.1 Thread stack size for the Blue Gene/Q system

	7.6 Creating libraries on the Blue Gene/Q system
	7.7 Running dynamically linked applications on the Blue Gene/Q system
	7.7.1 Creating a program
	7.7.2 Creating a shared library
	7.7.3 Running a Blue Gene/Q dynamically linked program on a front end node
	7.7.4 Running a dynamically linked program on the Blue Gene/Q system
	7.7.5 Tools for dynamic linking

	7.8 Mathematical Acceleration Subsystem Libraries
	7.9 Engineering and Scientific Subroutine Libraries
	7.10 Cross-compilation on the Blue Gene/Q system
	7.10.1 Configuring and building on an I/O node used as a front end node
	7.10.2 Using implicit program launching from a front end node

	7.11 Python support
	7.11.1 Using the Python interpreter in a cross-compiled environment
	7.11.2 Running the Python interpreter on the Blue Gene/Q system

	7.12 Using the QPX floating-point unit
	7.12.1 Using SIMD instructions in applications

	Chapter 8. Running and debugging applications
	8.1 Running applications
	8.1.1 IBM LoadLeveler

	8.2 Debugging applications
	8.2.1 General debugging architecture
	8.2.2 GNU Project Debugger
	8.2.3 Coreprocessor debugger
	8.2.4 The addr2line utility

	8.3 What to do when a job fails
	8.4 Debugging jobs
	8.4.1 The snapbug tool
	8.4.2 The Coreprocessor tool

	Appendix A. Mapping
	Mapping overview
	General guidance

	Appendix B. Blue Gene/Q personality
	Personality of Blue Gene/Q nodes
	Examples of retrieving Blue Gene/Q personality information

	Appendix C. PAMI and MPI header files and libraries
	Blue Gene/Q applications

	Appendix D. MPI and CNK environment variables
	Message Passing Interface environment variables
	Compute Node Kernel environment variables
	Setting environment variables

	Appendix E. Using GNU profiling
	Using the Blue Gene/Q gmon tool
	Specifying which ranks generate gmon.out files
	Functions to disable gmon.out files for some nodes
	Profiling for threads

	Profiling with the GNU toolchain
	Using timer tick (machine instruction level) profiling
	Collecting call count information

	Appendix F. Hardware performance counters
	Blue Gene Hardware Performance Monitoring API
	Performance Application Programming Interface

	Appendix G. Requirements for C++ programming in a failover environment
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	References
	Index
	Back cover

