
IBM XL C/C++ for Blue Gene/Q, V12.1

Getting Started with XL C/C++
Version 12.1

GC14-7361-00

���

IBM XL C/C++ for Blue Gene/Q, V12.1

Getting Started with XL C/C++
Version 12.1

GC14-7361-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 37.

First edition

This edition applies to IBM XL C/C++ for Blue Gene/Q, V12.1 (Program 5799-AG1) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1996, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other IBM information. xi
Other information xi

Technical support xi
How to send your comments xi

Chapter 1. Introducing XL C/C++ 1
About the Blue Gene architecture 1
Commonality with other IBM compilers 1
Operating system support 2
A highly configurable compiler 2
Language standard compliance 3

Compatibility with GNU 3
Source-code migration and conformance checking 3

Libraries 4
Tools, utilities, and commands 5
Program optimization 5
Shared memory parallelization 6
Diagnostic listings 7
Symbolic debugger support 7

Chapter 2. What's new for IBM XL C/C++
for Blue Gene/Q, V12.1 9
Blue Gene/Q features 9

Quad Processing Extension support. 9
Speculative execution of threads 9
Transactional memory 10

Compiler options and pragma directives support . . 10
Debug optimized program using -g 10
Compiler options or pragma directives for Blue
Gene/Q 11

Other new or changed compiler options and
pragma directives 12

Language support enhancements 16
C++0x features 16
C1X features 22
OpenMP 3.1 23
New built-in functions. 24

Performance and optimization 24
New diagnostic reports 25

Chapter 3. Setting up and customizing
XL C/C++. 29
Using custom compiler configuration files 29

Chapter 4. Developing applications
with XL C/C++ 31
The compiler phases 31
Editing C/C++ source files 31
Compiling with XL C/C++ 31

Invoking the compiler 32
Compiling parallelized XL C/C++ applications 32
Specifying compiler options 33
XL C/C++ input and output files 34

Linking your compiled applications with XL C/C++ 34
Dynamic and static linking 35

Running your compiled application 35
XL C/C++ compiler diagnostic aids 36

Debugging compiled applications 36
Determining what level of XL C/C++ is installed 36

Notices 37
Trademarks and service marks 39

Index 41

© Copyright IBM Corp. 1996, 2012 iii

iv XL C/C++: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL
C/C++ for Blue Gene®/Q, V12.1 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for
introductory overview and usage information for XL C/C++. It assumes that you
have some familiarity with command-line compilers, a basic knowledge of the C
and C++ programming languages, and basic knowledge of operating system
commands. Programmers new to XL C/C++ can use this document to find
information on the capabilities and features unique to XL C/C++.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions.”

Throughout this document, the bgxlc and bgxlc++ compiler invocations are used
to describe the actions of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,
and compiling and linking C or C++ applications using the XL C/C++ compiler, it
does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide for information on

installing XL C/C++.
v Compiler options: see the XL C/C++ Compiler Reference for detailed information

on the syntax and usage of compiler options.
v The C or C++ programming languages: see the XL C/C++ Language Reference for

information on the syntax, semantics, and IBM implementation of the C or C++
programming languages.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information on developing applications with XL C/C++, with a focus
on program portability and optimization.

Conventions
Typographical conventions

© Copyright IBM Corp. 1996, 2012 v

The following table shows the typographical conventions used in the IBM XL
C/C++ for Blue Gene/Q, V12.1 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, bgxlc and
bgxlC (bgxlc++), along with several
other compiler invocation commands
to support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: bgxlc
myprogram.c -O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only, or C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only, or C++ only
begins

C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

vi XL C/C++: Getting Started

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C1X, or C1X begins
C1X

C1X

C1X ends

The text describes a feature that is introduced into standard C
as part of C1X.

C++0x, or C++0x begins
C++0x

z/OSC++0x

C++0x ends

The text describes a feature that is introduced into standard
C++ as part of C++0x.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
will help you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a command, directive, or statement.
The ───� symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The �─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───�� symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword
optional_argument

��

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

�� keyword required_argument1
required_argument2

��

If choosing one of the items is optional, the entire stack is shown below the
main path.

About this document vii

�� keyword
optional_argument1
optional_argument2

��

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

�� �

,

keyword repeatable_argument ��

v The item that is the default is shown above the main path.

�� keyword
default_argument
alternate_argument ��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

��
(1) (2) (3) (4) (5) (9) (10)

pragma comment (compiler)
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

viii XL C/C++: Getting Started

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information

The following sections provide related information for XL C/C++:

IBM XL C/C++ information

XL C/C++ provides product information in the following formats:
v README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory and in the root directory of the installation CD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Blue Gene/Q, V12.1 Installation
Guide.

v Information center
The information center of searchable HTML files can be launched on a network
and accessed remotely or locally. Instructions for installing and accessing the
online information center are provided in the IBM XL C/C++ for Blue Gene/Q,
V12.1 Installation Guide.
The information center of searchable HTML files is viewable on the web at
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp.

v PDF documents
PDF documents are located by default in the /opt/ibmcmp/vacpp/bg/12.1/
doc/en_US/pdf/ directory. The PDF files are also available on the web at
http://www.ibm.com/software/awdtools/xlcpp/features/bg/library/.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Blue
Gene/Q, V12.1 Installation
Guide, GC14-7362-00

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

About this document ix

http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp
http://www.ibm.com/software/awdtools/xlcpp/features/bg/library/

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

Getting Started with IBM
XL C/C++ for Blue Gene/Q,
V12.1, GC14-7361-00

getstart.pdf Contains an introduction to the XL C/C++
product, with information on setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Blue
Gene/Q, V12.1 Compiler
Reference, GC14-7363-00

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C/C++ for Blue
Gene/Q, V12.1 Language
Reference, GC14-7364-00

langref.pdf Contains information about the C and C++
programming languages, as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards.

IBM XL C/C++ for Blue
Gene/Q, V12.1 Optimization
and Programming Guide,
SC14-7365-00

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization
and parallelization, and the XL C/C++
high-performance libraries.

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,
you can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++ including IBM Redbooks® publications,
white papers, tutorials, and other articles, is available on the web at:

http://www.ibm.com/software/awdtools/xlcpp/features/bg/library/

For more information about boosting performance, productivity, and portability,
see the C/C++ café at http://www.ibm.com/software/rational/cafe/community/
ccpp.

Standards and specifications

XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003(E), also

known as Standard C++.
v Information Technology - Programming languages - Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft
technical report has been accepted by the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

x XL C/C++: Getting Started

http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/features/bg/library/
http://www.ibm.com/software/rational/cafe/community/ccpp
http://www.ibm.com/software/rational/cafe/community/ccpp
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft
technical report has been submitted to the C++ standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1, available at

http://www.openmp.org

Other IBM information
v Blue Gene/Q Hardware Overview and Installation Planning, SG24-7872, available at

http://www.redbooks.ibm.com/redpieces/abstracts/sg247872.html?Open
v Blue Gene/Q Hardware Installation and Maintenance Guide, SG24-7974, available at

http://www.redbooks.ibm.com/redpieces/abstracts/sg247974.html?Open
v Blue Gene/Q High Availability Service Node, REDP-4657, available at

http://www.redbooks.ibm.com/redpieces/abstracts/redp4657.html?Open
v Blue Gene/Q System Administration, SG24-7869, available at http://

www.redbooks.ibm.com/redpieces/abstracts/sg247869.html?Open
v Blue Gene/Q Application Development, SG24-7948, available at

http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
v Blue Gene/Q Code Development and Tools Interface, REDP-4659, available at

http://www.redbooks.ibm.com/redpieces/abstracts/redp4659.html?Open

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/software/awdtools/xlcpp/features/bg/support/. This page
provides a portal with search capabilities to a large selection of Technotes and
other support information.

If you cannot find what you need, you can send email to compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/awdtools/xlcpp/features/bg/.

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by email to compinfo@ca.ibm.com.

Be sure to include the name of the information, the part number of the
information, the version of XL C/C++, and, if applicable, the specific location of
the text you are commenting on (for example, a page number or table number).

About this document xi

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.openmp.org
http://www.redbooks.ibm.com/redpieces/abstracts/sg247872.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247974.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp4657.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247869.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247869.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp4659.html?Open
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/features/bg/support/
http://www.ibm.com/software/awdtools/xlcpp/features/bg/

xii XL C/C++: Getting Started

Chapter 1. Introducing XL C/C++

IBM XL C/C++ for Blue Gene/Q, V12.1 is an advanced, high-performance
compiler that can be used for developing complex, computationally intensive
programs, including interlanguage calls with C and Fortran programs.

This section discusses the features of the XL C/C++ compiler at a high level. It is
intended for people who are evaluating the compiler, and for new users who want
to find out more about the product.

About the Blue Gene architecture
The IBM Blue Gene/Q solution is the third generation machine in IBM's Blue
Gene® program. It adheres to the key design strategies of the Blue Gene program,
providing petaflop scale performance in a package that is efficient in terms of
power, cooling and floor space, thereby reducing the total cost of ownership.

Compared to Blue Gene®/L and Blue Gene®/P, Blue Gene/Q extended
performance through an increase of processor cores and frequency, and added
4-way SMP functionality, hardware DMA, 10 Gb Ethernet, and aggressive power
management. The solution typically combines multiple racks of 1024 compute
nodes, each containing an SMP PowerPC® A2 processor. Each processor contains 16
cores for use by the application and one core for use by the system.

Blue Gene/Q provides a standard programming and cross compiling environment,
and supports a wide range of IBM and open source software libraries and
middleware. The Front End nodes contain the Linux Red Hat Enterprise Linux 6.2
(RHEL 6.2) operating system for developing, compiling, and debugging the high
performance applications that run on Blue Gene/Q compute nodes.

For more information about the Blue Gene solution, see "IBM System Blue Gene
Solution: Blue Gene/Q Application Development" available at http://
www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open.

Commonality with other IBM compilers
IBM XL C/C++ for Blue Gene/Q, V12.1 is part of a larger family of IBM C, C++,
and Fortran compilers.

XL C/C++, together with XL Fortran, comprise the family of XL compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX®, IBM Blue
Gene/P, IBM Blue Gene/Q, IBM i, selected Linux distributions, IBM z/OS®, and
IBM z/VM®. The common code base, along with compliance with international
programming language standards, helps support consistent compiler performance
and ease of program portability across multiple operating systems and hardware
platforms.

© Copyright IBM Corp. 1996, 2012 1

http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open

Operating system support
IBM XL C/C++ for Blue Gene/Q, V12.1, along with the compiler related tools,
supports the Red Hat Enterprise Linux 6.2 (RHEL 6.2) operating system on Blue
Gene/Q Front End nodes.

See the README file and "Before installing XL C/C++" in the XL C/C++
Installation Guide for a complete list of requirements.

The generated object programs and runtime libraries are run on Blue Gene/Q
compute nodes with the required software and disk space. Blue Gene/Q compute
nodes support the Blue Gene Compute Node Kernel (CNK) operating system.

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications specific to the type of hardware
that will be used to execute the compiled applications.

A highly configurable compiler
You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

Compiler invocation commands
XL C/C++ provides several different commands that you can use to invoke
the compiler, for example, bgxlC, bgxlc++, and bgxlc. Each invocation
command is unique in that it instructs the compiler to tailor compilation
output to meet a specific language level specification. Compiler invocation
commands are provided to support all standardized C/C++ language
levels, and many popular language extensions as well.

The compiler also provides corresponding "_r" versions of most invocation
commands, for example, bgxlc_r and bgxlC_r. The "_r" invocations instruct
the compiler to link and bind object files to thread safe components and
libraries, and produce thread safe object code for compiler-created data and
procedures.

For more information about XL C/C++ compiler invocation commands, see
"Invoking the compiler" in the XL C/C++ Compiler Reference .

Compiler options
You can choose from a large selection of compiler options to control
compiler behavior. Different categories of options help you to debug your
applications, optimize and tune application performance, select language
levels and extensions for compatibility with non-standard features and
behaviors supported by other C or C++ compilers, and perform many
other common tasks that would otherwise require changing the source
code.

XL C/C++ lets you specify compiler options through a combination of
environment variables, compiler configuration files, command line options,
and compiler directive statements embedded in your program source.

For more information about XL C/C++ compiler options, see "Compiler
options reference" in the XL C/C++ Compiler Reference.

Custom compiler configuration files
The installation process creates a default compiler configuration file
containing stanzas that define compiler option default settings.

2 XL C/C++: Getting Started

Your compilation needs may frequently involve specifying compiler option
settings other than the default settings provided by XL C/C++. If so, you
can use makefiles to define your compiler option settings, or alternatively,
you can create custom configuration files to define your own sets of
frequently used compiler option settings.

For more information about using custom compiler configuration files, see
“Using custom compiler configuration files” on page 29.

Language standard compliance
This section provides language standard compliance information for IBM XL
C/C++ for Blue Gene/Q, V12.1.

The compiler supports the following programming language specifications for
C/C++:

v ISO/IEC 9899:1999 (C99)
v ISO/IEC 9899:1990 (referred to as C89)
v ISO/IEC 14882:2003 (referred to as Standard C++)
v ISO/IEC 14882:1998, the first official specification of the language (referred

to as C++98)

In addition to the standardized language levels, XL C/C++ supports language
extensions, including:

v OpenMP Application Program Interface V3.1
v Language extensions to support vector programming
v A subset of GNU C and C++ language extensions
v A subset of C++0x features

See “C++0x features” on page 16 for more details.
v A subset of C1X features

See “C1X features” on page 22 for more details.

See "Language levels and language extensions" in the XL C/C++ Language Reference
for more information about C/C++ language specifications and extensions.

Compatibility with GNU
XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications developed with gcc and g++ compilers.

For details, see the Compatibility with GNU section in Getting Started with IBM XL
C/C++ for Linux, V12.1.

Source-code migration and conformance checking
XL C/C++ helps protect your investment in your existing C/C++ source code by
providing compiler invocation commands that instruct the compiler to compile
your application code to a specific language level.

You can also use the -qlanglvl compiler option to specify a given language level,
and the compiler will issue warnings, errors, and severe error messages if language
or language extension elements in your program source do not conform to that
language level.

See -qlanglvl in the XL C/C++ Compiler Reference for more information.

Chapter 1. Introducing XL C/C++ 3

Libraries
XL C/C++ includes a runtime environment containing a number of libraries.

IBM XL C/C++ for Blue Gene/Q, V12.1 requires the Blue Gene/Q tool chain for
cross-compilations. To use the runtime environment that contains the libraries, you
must ensure that the Blue Gene/Q tool chain is installed. It is recommended that
you install the tool chain to the default directory: /bgsys/drivers/ppcfloor

Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar and
vector mathematical intrinsic functions tuned specifically for optimum performance
on supported processor architectures. You can choose a MASS library to support
high-performance computing on a broad range of processors, or you can select a
library tuned to support a specific processor family.

The MASS library functions support 64-bit compilation mode, are thread-safe, and
offer improved performance over the default libm math library routines. They are
called automatically when you request specific levels of optimization for your
application. You can also make explicit calls to MASS library functions regardless
of whether optimization options are in effect or not.

See "Using the Mathematical Acceleration Subsystem" in the XL C/C++ Optimization
and Programming Guide for more information.

Basic Linear Algebra Subprograms

The Basic Linear Algebra Subprograms (BLAS) set of high-performance algebraic
functions are shipped in the libxlopt library. These functions let you:
v Compute the matrix-vector product for a general matrix or its transpose.
v Perform combined matrix multiplication and addition for general matrices or

their transposes.

For more information about using the BLAS functions, see "Using the Basic Linear
Algebra Subprograms" in the XL C/C++ Optimization and Programming Guide.

Other libraries

The following are also shipped with XL C/C++:
v The SMP runtime library supports both explicit and automated parallel

processing. See "SMP Runtime Library" in the XL C/C++ Optimization and
Programming Guide.

v XL C++ Runtime Library contains support routines needed by the compiler.

Support for Boost libraries

XL C/C++ for Blue Gene/Q, V12.1 partially supports the Boost V1.47.0 libraries. A
patch file is available that modifies the Boost 1.47.0 libraries so that they can be
built and used with XL C/C++ applications. The patch or modification file does
not extend nor provide additional functionality to the Boost libraries.

To access the patch file for building the Boost libraries, go to this page at
http://www.ibm.com/support/docview.wss?uid=swg27006911 and follow the link
in the download required Boost modification file section.

4 XL C/C++: Getting Started

http://www.ibm.com/support/docview.wss?uid=swg27006911

You can download the latest Boost libraries at http://www.boost.org/.

For more information on support for libraries, search on the XL C/C++ Compiler
support page at http://www.ibm.com/software/awdtools/xlcpp/features/bg/
support/.

Tools, utilities, and commands
This topic introduces the main tools, utilities, and commands that are included
with XL C/C++. It does not contain all compiler tools, utilities, and commands.

Utilities

gxlc and gxlc++ utilities
The gxlc and gxlc++ utilities translate GNU C and GNU C++ invocation
commands into corresponding xlc and xlc++ commands before invoking
the XL C/C++ compiler. The purpose of these utilities is to minimize the
number of changes to makefiles used for existing applications built with
the GNU compilers and to facilitate the transition to the XL C/C++
compiler. For more information, see the Tools, utilities, and commands
section in Getting Started with IBM XL C/C++ for Linux, V12.1.

new_install
The new_install utility configures IBM XL C/C++ for Blue Gene/Q, V12.1
for use on your system, after you install the compiler.

vac_configure
The vac_configure utility creates additional compiler configuration files to
contain your own custom sets of compiler option default settings. For more
information, see Running the vac_configure utility directly (for advanced
users) in the XL C/C++ Installation Guide.

Commands

genhtml command
The genhtml command converts an existing XML diagnostic report
produced by the -qlistfmt option. You can choose to produce XML or
HTML diagnostic reports by using the -qlistfmt option. The report can
help with finding optimization opportunities. For more information about
how to use this command, see genhtml command in the XL C/C++
Compiler Reference.

Program optimization
XL C/C++ provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
v Select different levels of compiler optimizations.
v Control optimizations for loops, floating point, and other types of operations.
v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL C/C++ provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:

Chapter 1. Introducing XL C/C++ 5

http://www.boost.org/
http://www.ibm.com/software/awdtools/xlcpp/features/bg/support/
http://www.ibm.com/software/awdtools/xlcpp/features/bg/support/

v Reducing the number of instructions executed for critical operations
v Restructuring generated object code to make optimal use of the Blue Gene

architecture
v Improving the usage of the memory subsystem
v Exploiting the ability of the architecture to handle large amounts of shared

memory parallelization

For more information, see these related topics:
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

v "Optimizing and tuning options" in the XL C/C++ Compiler Reference

v "Compiler built-in functions" in the XL C/C++ Compiler Reference

Shared memory parallelization
XL C/C++ supports application development for multiprocessor system
architectures.

You can use any of the following methods to develop your parallelized
applications with XL C/C++:

v Directive-based shared memory parallelization
v Instructing the compiler to automatically generate shared memory

parallelization
v Message passing based shared or distributed memory parallelization (MPI)

For more information, see "Parallelizing your programs" in the XL C/C++
Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL C/C++ and
many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a
particular loop. The existence of the directives in the source removes the need for
the compiler to perform any parallel analysis on the parallel code. OpenMP
directives require the presence of Pthread libraries to provide the necessary
infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its
own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel
region of code should be distributed across the processors.

3. Directives are available to control synchronization between the processors.

As of XL C/C++ for Blue Gene/Q, V12.1, XL C/C++ supports the OpenMP API
Version 3.1 specification. See “OpenMP 3.1” on page 23 for an overview of the
support provided by this feature.

6 XL C/C++: Getting Started

Speculative execution of threads

Thread-level speculative execution uses hardware support that dynamically detects
thread conflicts and rolls back conflicting threads for re-execution. You can get
significant performance gains in your applications by adding the compiler
directives of thread-level speculative execution without rewriting the program
code.

For details, see Thread-level speculative execution.

Transactional memory

Transactional memory is a model for controlling concurrent memory accesses in
the scope of parallel programming. It is also called lock-free synchronization and is
an alternative to lock-based synchronization. Transactions are implemented
through regions of code that you can designate to be single operations for the
system.

For details, see Transactional memory.

For more information about program performance optimization, see:
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

v www.openmp.org

Diagnostic listings
The compiler output listings and the XML or HTML reports provide important
information to help you develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or
omit. For more information about the applicable compiler options and the listing
itself, see "Compiler messages and listings" in the XL C/C++ Compiler Reference.

It is also possible to get information from the compiler in XML or HTML format
about some of the optimizations that the compiler was able to perform and also
which optimization opportunities were missed. This information can be used to
reduce programming effort when tuning applications, especially high-performance
applications. The report is defined by an XML schema and is easily consumable by
tools that you can create to read and analyze the results. For detailed information
about this report and how to use it, see "Using reports to diagnose optimization
opportunities" in the XL C/C++ Optimization and Programming Guide.

Symbolic debugger support
You can instruct XL C/C++ to include debugging information in your compiled
objects by using different levels of the -g compiler option.

For details, see -g in XL C/C++ Compiler Reference.

The debugging information can be examined by gdb or any other symbolic
debugger that is supported on Blue Gene/Q to help you debug your programs.
For how to use gdb remotely on the Blue Gene/Q compute nodes, see "Blue
Gene/Q Application Development" available at http://www.redbooks.ibm.com/
redpieces/abstracts/sg247948.html?Open.

Chapter 1. Introducing XL C/C++ 7

http://www.openmp.org
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open

8 XL C/C++: Getting Started

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q,
V12.1

This section describes features and enhancements added to the compiler in IBM XL
C/C++ for Blue Gene/Q, V12.1.

The XL compiler for Blue Gene/Q contains some significant enhancements since
XL C/C++, V9.0 that supported Blue Gene/L and Blue Gene/P. It also contains
many enhancements that are in common with the compilers on the AIX and Linux
platforms.

Blue Gene/Q features
This section describes the Blue Gene/Q new features added to the compiler in IBM
XL C/C++ for Blue Gene/Q, V12.1.

Quad Processing Extension support
This release of the compiler supports the Quad Processing eXtension (QPX)
instruction set of the Blue Gene/Q platform.

With the -qsimd=auto option enabled by default, the compiler can automatically
take advantage of QPX vector instructions.

New data types and intrinsic functions are introduced to support the QPX
instructions. With the QPX intrinsic functions, you can efficiently manipulate
vector operations in your application.

The QPX data type is twice larger than the data type of the Double Hummer
instruction set present in the Blue Gene/L and Blue Gene/P platforms: four
double-precision floating-point values instead of two double-precision
floating-point values. It is automatically enabled when you compile your program
for the Blue Gene/Q architecture.

You can use the -qflttrap=qpxstore option to enable the detection of floating-point
exceptions in QPX vectors.

For more information about the QPX data types and intrinsic functions, see Vector
types in the XL C/C++ Language Reference and Vector built-in functions in the XL
C/C++ Compiler Reference.

Speculative execution of threads
Thread-level speculative execution uses hardware support that dynamically detects
thread conflicts and rolls back conflicting threads for re-execution.

You can get significant performance gains in your applications by adding the
compiler directives of thread-level speculative execution without rewriting the
program code.

Thread-level speculative execution is enabled with the "-qsmp=speculative"
compiler option.

© Copyright IBM Corp. 1996, 2012 9

Related information
v "-qsmp"
v Thread-level speculative execution
v #pragma speculative for
v #pragma speculative sections
v Built-in functions for thread-level speculative execution
v Environment variables for thread-level speculative execution

Transactional memory
Transactional memory is a model for controlling concurrent memory accesses in
the scope of parallel programming. It is also called lock-free synchronization and is
an alternative to lock-based synchronization.

In Blue Gene/Q, the transactional memory model is implemented in the hardware
to access all the memory up to the 16 GB boundary.

Transactions are implemented through regions of code that you can designate to be
single operations for the system.

The transactional memory is enabled with the "-qtm" compiler option.

Related information
v Transactional memory
v #pragma tm_atomic
v Built-in functions for transactional memory
v Environment variables for transactional memory

Compiler options and pragma directives support
This section describes new and changed compiler options and pragma directives
for IBM XL C/C++ for Blue Gene/Q, V12.1.

You can specify compiler options on the command line. You can also modify
compiler behavior through pragma directives embedded in your application source
files. See the XL C/C++ Compiler Reference for detailed descriptions and usage
information for these and other compiler options.

Debug optimized program using -g
The -g compiler option generates debugging information for use by a symbolic
debugger. You can use -g to debug optimized code by viewing or possibly
modifying accessible variables at selected source locations in the debugger.

The -g option has been extended to have different levels (-g0 - -g9) so that you can
balance between debug capability and compiler optimization. Higher levels
provide a more complete debug support, at the cost of runtime or possible
compile-time performance, while lower levels provide higher runtime performance,
at the cost of some capability in the debugging session.

You can use -g to debug optimized code at -O2 by viewing or possibly modifying
accessible variables at selected source locations in the debugger.

For details, see -g.

10 XL C/C++: Getting Started

Compiler options or pragma directives for Blue Gene/Q
This section summarizes new or changed compiler options and pragma directives
that support Blue Gene/Q specific features.

Blue Gene/Q specific compiler options

-qarch -qarch specifies the processor architecture where the code may run.
-qarch=qp produces object code that runs on the Blue Gene/Q platform. It
is enabled by default.

-qtune -qtune tunes instruction selection, scheduling, and other
architecture-dependent performance enhancements to run best on a specific
hardware architecture. -qtune=qp specifies that optimizations are tuned for
the Blue Gene/Q platform. It is enabled by default.

-qstaticlink
When -qstaticlink is in effect, the compiler links only static libraries with
the object file being produced. It is enabled by default. You can specify
-qnostaticlink to dynamically link your programs.

-qtm -qtm enables support for transactional memory.

-qsmp -qsmp=speculative enables support for thread-level speculative execution.

-qnokeyword
To avoid invading user namespace, you can specify
-qnokeyword=vector4double to disable the support of vector4double data
type.

-qflttrap
-qflttrap=qpxstore enables the detection of Not a Number (NaN) or
infinity values in Quad Processing eXtension (QPX) vectors. The exceptions
only occur on QPX store instructions.

-qsimd
-qsimd=auto enables automatic generation of QPX vector instructions. It is
enabled by default at all optimization levels. To disable automatic
generation of QPX instructions, use -qsimd=noauto.

Blue Gene/Q specific pragma directives

#pragma speculative for
The speculative for pragma instructs the compiler to speculatively
parallelize a for loop.

#pragma speculative section, #pragma speculative sections
The speculative sections pragma instructs the compiler to speculatively
parallelize sections of the code. In code blocks delimited by speculative
sections, you can use the speculative section directive to delimit program
code segments.

#pragma tm_atomic
The tm_atomic pragma indicates a transactional atomic region.

#pragma pack
The #pragma pack directive gives members of aggregates an alignment of
1 byte. When #pragma pack is applied to an aggregate with a
vector4double member, the compiler generates a severe error message.

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 11

Other new or changed compiler options and pragma
directives

This section summarizes other new or changed compiler options and pragma
directives since V9.0 of the XL C/C++ compiler.

New or changed compiler options

-g The -g option is extended to have new different levels to improve the
debugging of optimized programs.

-qfunctrace
Traces the entry and exit points of functions in a compilation unit or only
for a specific list of functions.

-qhaltonmsg
The -qhaltonmsg option, previously supported only by the C++ compiler,
is now supported by XL C. It stops compilation before producing any
object files, executable files, or assembler source files if a specified error
message is generated. The negative form -qnohaltonmsg has also been
added.

-qhot

The -qhot=[no]simd option has been deprecated and replaced by the
-q[no]simd option. For details, see -qsimd.

In addition, the -qhot=fastmath option has been added to allow your
applications to use fast scalar versions of math functions.

-qinclude

The negative form -qnoinclude is added to ignore the previously specified
-qinclude option.

-qinfo

The suboptions als and noals have been added to the qinfo option to
report (or not report) possible violations of the ANSI aliasing
rule.-qinfo=all now enables all diagnostic messages for all groups except
als and ppt

-qinitauto
The -qinitauto option is enhanced to be able to perform word initialization
for automatic variables.

-qinline
Attempts to inline functions instead of generating calls to those functions,
for improved performance.

-qkeyword
C++0x The new suboption -q[no]keyword=constexpr enables or disables

the constexpr keyword.

-qlanglvl
The following suboptions are added or updated:

C++0x -qlanglvl=autotypededuction
This suboption controls whether the auto type deduction or the
trailing return type feature is enabled. You can use it to delegate
the task of type deduction of an auto variable to the compiler from
the type of its initializer expression.

12 XL C/C++: Getting Started

C++ -qlanglvl=c1xnoreturn
This suboption enables support for the _Noreturn function
specifier.

C++ -qlanglvl=complexinit
This suboption controls whether to enable the initialization of
complex types.

C++ IBM -qlanglvl=compatrvaluebinding
This suboption instructs the compiler to allow a non-const lvalue
reference to bind to an rvalue of a user-defined type where an
initializer is not required.

C++0x -qlanglvl=constexpr
This suboption enables the generalized constant expressions
feature, which extends the expressions permitted within constant
expressions.

Note: In XL C/C++ V12.1, this feature is a partial implementation
of what is defined in the C++0x standard.

C++0x -qlanglvl=explicitconversionoperators
This suboption enables the explicit conversion operators feature,
which allows you to inhibit unintended implicit conversions
through the user-defined conversion function.

C1X -qlanglvl=extc1x
This suboption enables all the currently supported C1X features
and other implementation-specific language extensions.

C++0x -qlanglvl=referencecollapsing
This suboption enables the reference collapsing feature, with which
you can form a reference to a reference type using a decltype
specifier, a typedef name, or a template type parameter.

C++0x -qlanglvl=rightanglebracket
This suboption enables the right angle bracket feature, which
removes the white space requirement for consecutive right angle
brackets.

C++0x -qlanglvl=rvaluereferences
This suboption enables the rvalue references feature.

C++0x -qlanglvl=scopedenum
This suboption enables the scoped enumeration feature, with
which you can declare a scoped enumeration type or an
enumeration without providing the enumerators.

C++ IBM -qlanglvl=tempsaslocals
This suboption extends the lifetime of temporaries to reduce
migration difficulty.

IBM -qlanglvl=textafterendif
This suboption suppresses the warning message that is emitted
when you are porting code from a compiler that allows extra text
after #endif or #else to IBM XL C/C++ compiler.

C++0x -qlanglvl=c99longlong
This suboption controls whether the C99 long long feature is
enabled. This feature improves source compatibility between the C
and C++ languages.

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 13

C++0x -qlanglvl=c99preprocessor
This suboption controls whether the C99 preprocessor features
adopted in C++0x are enabled. This feature can be used to provide
a more common preprocessor interface for C and C++ compilers.

C++0x -qlanglvl=decltype
This suboption controls whether the decltype feature is enabled.
This feature can be used to get a type that is based on the resultant
type of a possibly type-dependent expression.

C++0x -qlanglvl=delegatingctors
This suboption controls whether the delegating constructors feature
is enabled. This feature can be used to concentrate common
initializations in one constructor.

C++0x -qlanglvl=extendedfriend
This suboption controls whether the extended friend declarations
feature is enabled. This feature can be used to accept additional
forms of non-function friend declarations.

C++0x IBM -qlanglvl=extendedintegersafe
This suboption controls whether or not unsigned long long int
can be used as the type for decimal integer literals that do not
have a suffix containing u or U and cannot be represented by the
long long int type. This option takes effect only when the
-qlanglvl=c99longlong option is specified.

C++0x -qlanglvl=externtemplate
This suboption controls whether the explicit instantiation
declarations feature is enabled. This feature can be used to
suppress the implicit instantiation of a template specialization or
its members.

C++0x -qlanglvl=inlinenamespace
This suboption controls whether the inline namespace definitions
feature is enabled. This feature can be used to define and specialize
members of an inline namespace as if they were also members of
the enclosing namespace.

C++0x -qlanglvl=static_assert
This suboption controls whether the static assertions feature is
enabled. This feature can be used to produce compile-time
assertions for which a severe error message is issued on failure.

C++0x -qlanglvl=variadic[templates]
This suboption controls whether the variadic templates feature is
enabled. This feature can be used to define class or function
templates that have any number (including zero) of parameters.

See “C++0x features” on page 16 for more information about the new
C++0x features.

See “C1X features” on page 22 for more information about the C1X
features.

-qlibmpi
Tunes code based on the known behavior of the Message Passing Interface
(MPI) functions.

-qlistfmt
The -qlistfmt option is enhanced to generate HTML reports as well as

14 XL C/C++: Getting Started

XML reports, containing information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of -qlistfmt has changed. In this release, if you do not
specify a particular type of content, the option generates all the available
content, rather than generating none.

-qoptfile
The new option -qoptfile specifies a file containing a list of additional
command line options to be used for the compilation.

-qpic -qpic=large now enables large TOC access and prevents TOC overflow
conditions when the Table of Contents is larger than 64 Kb.

-qsaveopt
The existing -qsaveopt option is enhanced to also include the user's
configuration file name and the options specified in the configuration files.

-qreport
When used together with compiler options that enable automatic
parallelization or vectorization, the -qreport option now reports the
number of streams in a loop and produces information when loops cannot
be SIMD vectorized due to non-stride-one references.

-qrestrict (C only)
You can use -qrestrict to indicate to the compiler that no other pointer can
access the same memory that has been addressed by function parameter
pointers.

-qshowmacros
When used in conjunction with the -E option, the -qshowmacros option
replaces preprocessed output with macro definitions. There are suboptions
provided to control the emissions of predefined and user-defined macros
more precisely.

-qsmp=omp
When -qsmp=omp is in effect, the additional functionality of OpenMP API
3.1 is now available. For more information, see “OpenMP 3.1” on page 23.

-qstackprotect
Protects your applications against malicious code or programming errors
that overwrite or corrupt the stack.

-qstrict

Many suboptions have been added to the -qstrict option to allow more
control over optimizations and transformations that violate strict program
semantics. For details, see “Performance and optimization” on page 24.

-qstrict=vectorprecision disables vectorization in loops where it might
produce different results in vectorized iterations than in nonvectorized
ones.

-qtimestamps
This option can be used to remove timestamps from generated binaries.

-qtls The thread local storage support has been enhanced to include
__attribute__((tls-model("string"))) where string is one of local-exec,
initial-exec, local-dynamic, or global-dynamic.

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 15

New or changed pragma directives

#pragma ibm independent_loop
The independent_loop pragma is added. It explicitly states that the
iterations of the chosen loop are independent, and that the iterations can
be executed in parallel.

#pragma ibm iterations
The iterations pragma is added. It specifies the approximate number of
loop iterations for the chosen loop.

#pragma ibm max_iterations
The max_iterations pragma is added. It specifies the approximate
maximum number of loop iterations for the chosen loop.

#pragma ibm min_iterations
The min_iterations pragma is added. It specifies the approximate
minimum number of loop iterations for the chosen loop.

#pragma simd_level
The simd_level pragma is added. It controls the compiler code generation
of vector instructions for individual loops.

Language support enhancements
This section describes language enhancements added to the compiler in IBM XL
C/C++ for Blue Gene/Q, V12.1.

C++0x features
C++0x is the working draft of the new C++ programming language standard.

Note: C++0x is a new version of the C++ programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C++0x standard is
complete, including the support of a new C++ standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility, in source, binary, or listings and other compiler interfaces, with
earlier releases of IBM's implementation of the new features of the C++0x standard
and therefore they should not be relied on as a stable programming interface.

Note: C++0x has been ratified and published as ISO/IEC 14882:2011. All references
to C++0x in this document are equivalent to the ISO/IEC 14882:2011 standard.
Corresponding information, including programming interfaces, will be updated in
a future release.

The following features are introduced:
v A new language level: extended0x
v C99 long long and new integer promotion rules for arithmetic conversions
v C++ preprocessor support for C99 features
v C99 preprocessor features adopted in C++0x
v Auto type deduction
v Decltype
v Delegating constructors
v Explicit instantiation declarations
v Extended friend declarations

16 XL C/C++: Getting Started

v Inline namespace definitions
v Static assertion
v Variadic templates
v Explicit conversion operators
v Generalized constant expressions
v Reference collapsing
v Right angle brackets
v Rvalue references
v Scoped enumerations
v Trailing return type

New language level - extended0x

The default -qlanglvl compiler option remains extended when invoking the C++
compiler.

A new suboption has been added to the -qlanglvl option. You can use the
-qlanglvl=extended0x option to enable most of the C++ features and all the
currently-supported C++0x features. For details, see -qlanglvl in the XL C/C++
Compiler Reference.

C99 long long under C++

The C99 long long feature improves source compatibility between the C and C++
languages. To enable C99 long long, use the -qlanglvl=c99longlong option under
the XL C++ compiler.

IBM When C99 long long is in effect, if a decimal integer literal that does not
have a suffix containing u or U cannot be represented by the long long int type,
you can specify the -qlanglvl=[no]extendedintegersafe option to determine
whether to use the unsigned long long int type to represent the literal. For more
information, see "Integer literals" in the XL C/C++ Language Reference.

In this release, compiler behavior changes when performing certain arithmetic
operations with integral literal data types. Specifically, the integer promotion rules
have changed.

Previously, in C++ (and as an extension to C89), when compiling with -qlonglong,
an unsuffixed integral literal would be promoted to the first type in this list into
which it fitted:

int

long int

unsigned long int

long long int

unsigned long long

When compiling with -qlanglvl=extended0x, the compiler now promotes
unsuffixed integral literal to the first type in this list into which it fits:

int

long int

long long int

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 17

unsigned long long

Note: Like our implementation of the C99 Standard in the C compiler, C++ will
allow promotions from long long to unsigned long long if a value cannot fit into
a long long type, but can fit in an unsigned long long. In this case, a message will
be generated.

The macro __C99_LLONG has been added for compatibility with C99. This macro is
defined to 1 with -qlanglvl=extended0x and is otherwise undefined.

For more information, see "Integral and floating-point promotions" in the XL
C/C++ Language Reference.

Preprocessor changes

The following changes to the C++ preprocessor make it easier to port code from C
to C++:
v Regular string literals can now be concatenated with wide-string literals.
v The #line <integer> preprocessor directive has a larger upper limit. It has been

increased from 32767 to 2147483647 for C++ .
v C++ now supports _Pragma operator.
v These macros now apply to C++ as well as C:

– __C99_MACRO_WITH_VA_ARGS (also available with -qlanglvl=extended)
– __C99_MAX_LINE_NUMBER (also available with -qlanglvl=extended)
– __C99_PRAGMA_OPERATOR
– __C99_MIXED_STRING_CONCAT

Note: Except as noted, these C++ preprocessor changes are only available when
compiling with -qlanglvl=extended0x.

C99 preprocessor features adopted in C++0x

With several C99 preprocessor features adopted in C++0x, C and C++ compilers
provide a more common preprocessor interface, which can ease porting C source
files to the C++ compiler, eliminate semantic differences between the C and C++
preprocessors, and avoid preprocessor compatibility issues or diverging
preprocessor behaviors.

You can use the -qlanglvl=c99preprocessor option to enable this feature.

For more information, see "C99 preprocessor features adopted in C++0x)" in the XL
C/C++ Language Reference.

Auto type deduction

With the auto type deduction feature, you no longer need to specify a type while
declaring a variable. This is because auto type deduction delegates the task of
deducting the type of an auto variable to the compiler from the type of its
initializer expression.

You can use the -qlanglvl=autotypededuction option to enable this feature.

For more information, see "The auto type specifier (C++0x)" in the XL C/C++
Language Reference.

18 XL C/C++: Getting Started

Decltype

With the decltype feature, you can get a type that is based on the resultant type of
a possibly type-dependent expression.

You can use the -qlanglvl=decltype option to enable this feature.

For more information, see "The decltype(expression) type specifier (C++0x)" in the
XL C/C++ Language Reference.

Delegating constructors

With the delegating constructors feature, you can concentrate common
initializations in one constructor, which makes programs more readable and
maintainable.

You can use the -qlanglvl=delegatingctors option to enable this feature.

For more information, see "Delegating constructors (C++0x)" in the XL C/C++
Language Reference.

Explicit instantiation declarations

With the explicit instantiation declarations feature, you can suppress the implicit
instantiation of a template specialization or its members.

You can use the individual suboption -qlanglvl=externtemplate or the group
options -qlanglvl=extended or -qlanglvl=extended0x to enable this feature.

For more information, see "Explicit instantiation (C++ only)" in the XL C/C++
Language Reference.

Extended friend declarations

The extended friend declarations feature relaxes the syntax rules governing friend
declarations as follows:
v Template parameters, typedef names, and basic types can be declared as friends.
v The class-key in the context for friend declarations is no longer necessary in

C++0x.

You can use the -qlanglvl=extendedfriend option to enable this feature.

For more information, see "Friends (C++ only)" in the XL C/C++ Language Reference.

Inline namespace definitions

Inline namespace definitions are namespace definitions with an initial inline
keyword. You can define or specialize the members of an inline namespace as if
they belong to the enclosing namespace that contains the inline namespace.

You can use the -qlanglvl=inlinenamespace option to enable this feature.

For more information, see "Inline namespace definitions (C++0x)" in the XL C/C++
Language Reference.

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 19

Static assertion

The static assertion feature provides you with the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C++ Standard Library can detect and diagnose common

usage errors, thus improving usability.

You can use a static_assert declaration to check important program invariants at
compile time.

You can use the -qlanglvl=static_assert option to enable this feature.

For more information, see "static_assert declaration (C++0x)" in the XL C/C++
Language Reference.

Variadic templates

With the variadic templates feature, you can define class or function templates that
have any number (including zero) of parameters.

You can use the -qlanglvl=variadic[templates] option to enable this feature.

For more information, see "Variadic templates (C++0x)" in the XL C/C++ Language
Reference.

Explicit conversion operators

The explicit conversion operators feature supports the explicit function specifier
being applied to the definition of a user-defined conversion function. You can use
this feature to inhibit implicit conversions from being applied where they might be
unintended, and thus program more robust classes with fewer ambiguity errors.

You can use the -qlanglvl=explicitconversionoperators option to enable this
feature.

For more information, see "Explicit Conversion Operators (C++0x)" in the XL
C/C++ Language Reference.

Generalized constant expressions

The generalized constant expressions feature extends the expressions permitted
within constant expressions. A constant expression is one that can be evaluated at
compile time.

You can use the -qlanglvl=constexpr option to enable this feature.

Note: In XL C/C++ V12.1, this feature is a partial implementation of what is
defined in the C++0x standard.

Reference collapsing

With the reference collapsing feature, you can form a reference to a reference type
using one of the following contexts:
v A decltype specifier
v A typedef name

20 XL C/C++: Getting Started

v A template type parameter

You can use the -qlanglvl=referencecollapsing option to enable this feature.

For more information, see "Reference collapsing (C++0x)" in the XL C/C++
Language Reference.

Right angle brackets

In the C++ language, two consecutive closing angle brackets (>) must be separated
with a white space, because they are otherwise parsed as the bitwise right-shift
operator (>>). The right angle bracket feature removes the white space requirement
for consecutive right angle brackets, thus making programming more convenient.

You can use the -qlanglvl=rightanglebracket option to enable this feature.

For more information, see "Class templates (C++ only)" in the XL C/C++ Language
Reference.

Rvalue references

With the rvalue references feature, you can overload functions based on the value
categories of arguments and similarly have lvalueness detected by template
argument deduction. You can also have an rvalue bound to an rvalue reference
and modify the rvalue through the reference. This enables a programming
technique with which you can reuse the resources of expiring objects and therefore
improve the performance of your libraries, especially if you use generic code with
class types, for example, template data structures. Additionally, the value category
can be considered when writing a forwarding function.

You can use the -qlanglvl=rvaluereferences option to enable this feature.

For more information, see "Using rvalue references (C++0x)" in the XL C/C++
Optimization and Programming Guide.

Scoped enumerations

With the scoped enumeration feature, you can get the following benefits:
v The ability to declare a scoped enumeration type, whose enumerators are

declared in the scope of the enumeration.
v The ability to declare an enumeration without providing the enumerators. The

declaration of an enumeration without providing the enumerators is referred to
as forward declaration.

v The ability to specify explicitly the underlying type of an enumeration.
v Improved type safety with no conversions from the value of an enumerator (or

an object of an enumeration type) to an integer.

You can use the -qlanglvl=scopedenum option to enable this feature.

For more information, see "Enumeration" in the XL C/C++ Language Reference.

Trailing return type

The trailing return type feature is useful when declaring the following types of
templates and functions:

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 21

v Function templates or member functions of class templates with return types
that depend on the types of the function arguments

v Functions or member functions of classes with complicated return types
v Perfect forwarding functions

You can use the -qlanglvl=autotypededuction option to enable this feature.

For more information, see "Trailing return type (C++0x)" in the XL C/C++ Language
Reference.

Related information in the XL C/C++ Compiler Reference

-qlanglvl

C1X features
This release introduces support for selected features of C1X.

Note: C1X is a new version of the C programming language standard. IBM
continues to develop and implement the features of the new standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the features of the C1X standard is
complete, including the support of a new C standard library, the implementation
may change from release to release. IBM makes no attempt to maintain
compatibility, in source, binary, or listings and other compiler interfaces, with
earlier releases of IBM's implementation of the new features of the C1X standard
and therefore they should not be relied on as a stable programming interface.

Note: C1X has been ratified and published as ISO/IEC 9899:2011. All references to
C1X in this document are equivalent to the ISO/IEC 9899:2011 standard.
Corresponding information, including programming interfaces, will be updated in
a future release.

The following features are introduced in IBM XL C/C++ for Blue Gene/Q, V12.1:
v Anonymous structures
v Complex type initialization
v New language level - extc1x

v The _Noreturn function specifier
v Static assertions

Anonymous structures

This feature enables the declaration of anonymous structures under the extc1x
language level. For more information, see "Anonymous structures" in the XL C/C++
Language Reference.

Complex type initialization

Macros CMPLX, CMPLXF, and CMPLXL are defined inside the standard header
file complex.h to enable the initialization of complex types under the extc1x
language level. For more information, see "Initialization of complex types (C1X)" in
the XL C/C++ Language Reference.

22 XL C/C++: Getting Started

New language level - extc1x

A new suboption has been added to the -qlanglvl option in this release. When you
compile with the C compiler, you can use -qlanglvl=extc1x to enable C1X features
that are currently supported by XL C/C++. Certain C1X features are also available
when you compile with the C++ compiler. For further information, see the sections
that describe individual features.

The _Noreturn function specifier

The _Noreturn function specifier declares that a function does not return to its
caller. You can define your own functions that do not return using this function
specifier. The compiler can produce better code by ignoring what would happen if
the function returns. For more information, see "The _Noreturn function specifier"
in the XL C/C++ Language Reference.

Static assertions

The addition of static assertions to the C language has the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C Standard Library can detect and diagnose common

usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.

For more information, see "_Static_assert declaration (C1X)" in the XL C/C++
Language Reference.

OpenMP 3.1
IBM XL C/C++ for Blue Gene/Q, V12.1 supports the OpenMP Application
Program Interface Version 3.1 specification. The XL C/C++ implementation is
based on IBM's interpretation of the OpenMP Application Program Interface
Version 3.1.

OpenMP 3.1 includes the following updates to OpenMP 3.0:
v Adds final and mergeable clauses to the task construct to support optimization.
v Adds the taskyield construct to allow users to specify where in the program

can perform task switching.
v Adds the omp_in_final runtime library function to support specialization of final

task regions.
v Extends the atomic construct to include read, write, and capture forms; adds

the update clause to apply the existing form of the atomic construct.
v Adds two reduction operators: min and max.
v Allows const-qualified types to be specified on the firstprivate clause.
v Adds the OMP_PROC_BIND environment variable to control whether OpenMP

threads are allowed to move between processors.
v Extends the OMP_NUM_THREADS environment variable to specify the number of

threads to use for nested parallel regions.

Related information
v "OpenMP environment variables" in the XL C/C++ Compiler Reference

v "Pragma directives for parallel processing" in the XL C/C++ Compiler Reference

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 23

v www.openmp.org

New built-in functions
This section describes the major categories of built-in functions that are newly
added since XL C/C++, V9.0.

Thread-level speculative execution built-in functions

With the built-in functions provided for thread-level speculative execution, you can
retrieve statistical information, write statistics into log files, or switch mode to
transactional memory (TM) at runtime.

Transactional memory built-in functions

With the built-in functions provided for transactional memory, you can retrieve
statistical information, write statistics into log files, or switch mode to thread-level
speculative execution (SE) at runtime.

Quad Processing eXtension built-in functions

You can use the Quad Processing Extension (QPX) built-in functions to access
individual elements of vectors and manipulate vectors.

GCC atomic memory access built-in functions

New XL C/C++ built-in functions for atomic memory access, whose behavior
corresponds to that provided by GNU Compiler Collection (GCC), are added in
this release. In a program with multiple threads, you can use these functions to
atomically and safely modify data in one thread without interference from another
thread.

Conversion functions

These new functions convert between Declets and Binary Coded Decimal.
v __cbcdtd

v __cdtbcd

Comparison functions

This new function compares bytes.
v __cmpb

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

Performance and optimization
Additional features and enhancements assist with performance tuning and
application optimization.

Enhancements to -qstrict

Many suboptions have been added to the -qstrict option to allow more
fine-grained control over optimizations and transformations that violate strict
program semantics. In previous releases, the -qstrict option disabled all

24 XL C/C++: Getting Started

http://www.openmp.org

transformations that violate strict program semantics. This is still the behavior if
you use -qstrict without suboptions. Likewise, in previous releases -qnostrict
allowed transformations that could change program semantics. Because a higher
level of optimizations might require relaxing strict program semantics, the addition
of the suboptions relaxes selected rules to get specific benefits of faster code
without turning off all semantic verifications.

You can use 16 new suboptions separately or use a suboption group. For detailed
information about these suboptions, see "-qstrict" in the XL C/C++ Compiler
Reference.

Reports about compiler optimizations

There are a number of enhancements to the listing reports to give you more
information about how the compiler optimized your code. You can use this
information to get further benefits from the optimization capabilities of the
compiler. For more details about these enhanced reports, see “New diagnostic
reports.”

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and
directives.

Information presented here is a brief overview. For detailed information about
these options, directives, and other performance-related compiler options, see
"Optimization and tuning options" in the XL C/C++ Compiler Reference.

Table 4. Performance-related compiler options and directives

-qinline=level=number A new option is added to -qinline to provide guidance
to the compiler about the relative value of inlining in
relation to the default value of 5.number is a range of
integer values 0 - 10 that indicates the level of inlining
you want to use. For details, see -qinline in the XL
C/C++ Compiler Reference.

-qfloat Some -qfloat suboptions are affected by the new
suboptions for -qstrict.

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

New diagnostic reports
The new diagnostic reports can help you identify opportunities to improve the
performance of your code.

Compiler reports in XML or HTML format

It is now possible to get information in XML or HTML format about the
optimizations that the compiler was able to perform and also which optimization
opportunities were missed. This information can be used to reduce programming
effort for tuning applications, especially high-performance applications.

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 25

The -qlistfmt option and its associated suboptions can be used to generate the
XML or HTML report. By default, this option now generates all the available
content if you do not specify the type of content.

To view the HTML version of an XML report that has been already generated, you
can now use the genhtml tool. For more information about how to use this tool,
see genhtml command in the XL C/C++ Compiler Reference.

For detailed information about this report and how to use it, see "Using reports to
diagnose optimization opportunities" in the XL C/C++ Optimization and
Programming Guide.

Report of data reorganization

The compiler can generate the following information in the listing files:
v Data reorganizations (a summary of how program variable data gets reorganized

by the compiler)
v The location of data prefetch instructions inserted by the compiler

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. The data reorganization messages for
program variable data are added to the data reorganization section of the listing
file with the label DATA REORGANIZATION SECTION during the IPA link pass.
Reorganizations include:
v array splitting
v array transposing
v memory allocation merging
v array interleaving
v array coalescing

To generate information about data prefetch insertion locations, use the
optimization level of -qhot, or any other option that implies -qhot together with
-qreport. This information appears in the LOOP TRANSFORMATION SECTION of the
listing file.

Additional loop analysis

A new suboption has been added to -qhot to add more aggressive loop analysis.
-qhot=level=2 together with -qsmp and -qreport add information about loop nests
on which the aggressive loop analysis was performed to the LOOP TRANSFORMATION
SECTION of the listing file. This information can also appear in the XML listing file
created with the -qlistfmt option.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

The information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Listings, messages and
compiler information" in the XL C/C++ Compiler Reference.

26 XL C/C++: Getting Started

Table 5. Listings-related compiler options and directives

Option/directive Description

-qlistfmt The -qlistfmt option has been enhanced to generate
HTML reports as well as XML reports, containing
information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of this option has changed. Now,
if you do not specify a particular type of content, the
option generates all the available content, rather than
generating none.

Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1 27

28 XL C/C++: Getting Started

Chapter 3. Setting up and customizing XL C/C++

For complete prerequisite and installation information for XL C/C++, refer to
"Before installing" in the XL C/C++ Installation Guide.

Using custom compiler configuration files
You can customize compiler settings and options by modifying the default
configuration file or by creating your own.

You have the following options to customize compiler settings:
v The XL C/C++ compiler installation process creates a default compiler

configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

v You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings you specify in your custom configuration files together
with compiler settings specified in the default configuration file. Compiler
updates that might later affect settings in the default configuration file does not
affect the settings in your custom configuration files.

For more information, see "Using custom compiler configuration files" in the XL
C/C++ Compiler Reference.

© Copyright IBM Corp. 1996, 2012 29

30 XL C/C++: Getting Started

Chapter 4. Developing applications with XL C/C++

C/C++ application development consists of repeating cycles of editing, compiling
and linking (by default a single step combined with compiling), and running.

Notes:

1. Before you can use the compiler, you must first ensure that XL C/C++ and the
Blue Gene/Q tool chain are properly installed and configured. For more
information, see the XL C/C++ Installation Guide.

2. To learn about writing C/C++ programs, refer to the XL C/C++ Language
Reference.

The compiler phases
A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities will be executed more than once
during a compilation. As each program runs, the results are sent to the next step in
the sequence.
1. Preprocessing of source files
2. Compilation, which may consist of the following phases, depending on what

compiler options are specified:
a. Front-end parsing and semantic analysis
b. High-level optimization
c. Low-level optimization
d. Register allocation
e. Final assembly

3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when
you compile your application. To see the amount of time the compiler spends in
each phase, specify -qphsinfo.

Editing C/C++ source files
To create C/C++ source programs, you can use any text editor available to your
system.

Source programs must be saved using a recognized file name suffix. See “XL
C/C++ input and output files” on page 34 for a list of suffixes recognized by XL
C/C++.

For a C or C++ source program to be a valid program, it must conform to the
language definitions specified in the XL C/C++ Language Reference.

Compiling with XL C/C++
XL C/C++ is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular C/C++ application.

© Copyright IBM Corp. 1996, 2012 31

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile C or
C++ source files, assemble any .s and .S files, and link the object files and libraries
into an executable program.

To compile a source program, use any of the available XL C/C++ for Blue Gene/Q
compiler invocation commands. The bg-prefixed invocation commands on the Blue
Gene/Q Front End node (RHEL 6.2) are for cross-compiling applications for use on
the Blue Gene/Q compute node. The invocation commands that are not prefixed
with bg create executable programs targeted for RHEL 6.2 on POWER® platforms,
and are provided only for testing and debugging purposes. For the development of
applications targeted for the Front End node, IBM provides the IBM XL C/C++ for
Linux, V12.1 product. As well, only the compiler options which are supported by
the bg cross-compiler commands are supported when using these compiler
invocations to create executable files for Blue Gene/Q.

To specify an invocation command, use the following basic syntax:

��
(1)

bgxlc
(2)

bgxlC
bgxlc++

� � input_file
compiler_option

��

Notes:

1 Basic invocation to compile C source code

2 Basic invocations to compile C++ source code

For most applications, you should compile with bgxlc, bgxlc++, or a thread safe
counterpart. You can use bgxlc++ to compile either C or C++ program source, but
compiling C++ files with bgxlc may result in link or run time errors because
libraries required for C++ code are not specified when the linker is called by the C
compiler.

Additional invocation commands are available to meet specialized compilation
needs, primarily to provide explicit compilation support for different levels and
extensions of the C or C++ language. See "Invoking the compiler" in the XL C/C++
Compiler Reference for more information about compiler invocation commands
available to you, including special invocations intended to assist developers
migrating from a GNU compilation environment to XL C/C++.

Compiling parallelized XL C/C++ applications
XL C/C++ provides thread-safe compiler invocation commands that you can use
when compiling parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,
except that they link and bind compiled objects to thread-safe components and
libraries. The generic XL C/C++ thread-safe compiler invocations include:

v bgxlC_r
v bgxlc++_r
v bgxlc_r

32 XL C/C++: Getting Started

XL C/C++ provides additional thread-safe invocations to meet specific compilation
requirements. See "Invoking the compiler" in the XL C/C++ Compiler Reference for
more information.

Note: Using any of these commands alone does not imply parallelization. For the
compiler to recognize OpenMP directives and activate parallelization, you must
also specify -qsmp compiler option. In turn, you should specify the -qsmp option
only in conjunction with one of these thread-safe invocation commands. When you
specify -qsmp, the driver links in the libraries specified on the smp libraries line in
the active stanza of the configuration file.

For more information on parallelized applications, see "Parallelizing your
programs" in the XL C/C++ Optimization and Programming Guide.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler
characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options
v In your source code using directive statements
v In a makefile
v In the stanzas found in a compiler configuration file
v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple
compiler options are specified. To resolve these conflicts in a consistent fashion, the
compiler usually applies the following general priority sequence to most options:

1. Directive statements in your source file override command-line settings
2. Command-line compiler option settings override configuration file settings
3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a
command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches any
directories specified with -I in the vac.cfg file before it searches the directories
specified with -I on the command-line. The option is cumulative rather than
preemptive.

See the XL C/C++ Compiler Reference for more information about compiler options
and their usage.

Other options with cumulative behavior are -R and -l (lowercase L).

You can also pass compiler options to the linker, assembler, and preprocessor. See
"Compiler options reference" in the XL C/C++ Compiler Reference for more
information about compiler options and how to specify them.

Chapter 4. Developing applications with XL C/C++ 33

XL C/C++ input and output files
These file types are recognized by XL C/C++.

For detailed information about these and additional file types used by the
compiler, see "Types of input files" in the XL C/C++ Compiler Reference and "Types
of output files" in the XL C/C++ Compiler Reference.

Table 6. Input file types

Filename extension Description

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

.so Shared object or library files

Table 7. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Make dependency file

.i Preprocessed source files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object or library files

Linking your compiled applications with XL C/C++
By default, you do not need to do anything special to link an XL C/C++ program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, running the following command:
bgxlc++ file1.C file2.o file3.C

compiles file1.C and file3.C to produce the object files file1.o and file3.o,
then all object files (including file2.o) are submitted to the linker to produce one
executable.

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.
bgxlc++ -c file1.C # Produce one object file (file1.o)
bgxlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)
bgxlc++ file1.o file2.o file3.o # Link object files with default libraries

For more information about compiling and linking your programs, see:
v "Linking" in the XL C/C++ Compiler Reference

34 XL C/C++: Getting Started

v "Constructing a library" in the XL C/C++ Optimization and Programming Guide

Dynamic and static linking
XL C/C++ allows your programs to take advantage of the operating system
facilities for both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They may perform better than statically linked programs if several
programs use the same shared routines at the same time. They also allow you to
upgrade the routines in the shared libraries without relinking.

Static linking means that the code for all routines called by your program becomes
part of the executable file. On Blue Gene/Q platforms, static linking is enabled by
default.

Statically linked programs can be moved to run on systems without the XL C/C++
runtime libraries. They may perform better than dynamically linked programs if
they make many calls to library routines or call many small routines. They do
require some precautions in choosing names for data objects and routines in the
program if you want to avoid naming conflicts with library routines. They also
may not work if you compile them on one level of the operating system and run
them on a different level of the operating system.

Related information
v The -qstaticlink compiler option

Running your compiled application
The default file name for the program executable file produced by the XL C/C++
compiler is a.out. You can select a different name with the -o compiler option.

To run a program on Blue Gene/Q, use runjob and enter the name of the program
executable file with any runtime arguments on the command line. For details
about the runjob command, see "Blue Gene/Q Application Development" available at
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open.

Canceling execution

To cancel a running program on Blue Gene/Q, you can cancel the runjob
command. For details, see "Blue Gene/Q Application Development" available at
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open.

You can press the Ctrl+C key to stop the job that is specified by runjob.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL C/C++ compiler. Other environment
variables do not control actual runtime behavior, but can have an impact on how
your applications will run.

Chapter 4. Developing applications with XL C/C++ 35

http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open

For more information on environment variables and how they can affect your
applications at run time, see the XL C/C++ Installation Guide.

XL C/C++ compiler diagnostic aids
XL C/C++ issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL C/C++ Compiler Reference:
v "Compiler messages and listings"
v "Error checking and debugging options"
v "Listings, messages, and compiler information options"

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL C/C++.

At compile time, you can use the -g or -qlinedebug option to instruct the XL
C/C++ compiler to include debugging information in compiled output. For -g, you
can also use different levels to balance between debug capability and compiler
optimization. For more information about the debugging options, see "Error
checking and debugging" in the XL C/C++ Compiler Reference.

You can then use gdb or any other symbolic debugger to step through and inspect
the behavior of your compiled application.

Optimized applications pose special challenges when debugging. When debugging
highly optimized applications, you should consider using the -qoptdebug compiler
option. For more information about optimizing your code, see "Optimizing your
applications" in the XL C/C++ Optimization and Programming Guide.

Determining what level of XL C/C++ is installed
When contacting software support for assistance, you will need to know what level
of XL C/C++ is installed on your machine.

To display the version and release level of the compiler you have installed on your
system, invoke the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following at the
command line:

bgxlc++ -qversion=verbose

36 XL C/C++: Getting Started

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2012 37

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

38 XL C/C++: Getting Started

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2010.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 39

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

40 XL C/C++: Getting Started

Index

Special characters
.a files 34
.c and .C files 34
.i files 34
.lst files 34
.mod files 34
.o files 34
.s files 34
.S files 34
.so files 34

A
archive files 34
assembler

source (.s) files 34
source (.S) files 34

B
basic example, described ix
built-in functions 24

C
C++0x

explicit conversion operators 16
reference collapsing 16
rvalue references 16
scoped enumerations 16
trailing return type 16

C1X
_Static_assert 22

code optimization 5
compilation

sequence of activities 31
compiler

architecture 1
controlling behavior of 33
invoking 32
running 32

compiler directives
new or changed 11, 12

compiler options
conflicts and incompatibilities 33
new or changed 11, 12
specification methods 33

compiling
SMP programs 32

customization
for compatibility with GNU 3

D
debugger support 36

output listings 36
symbolic 7

debugging 36
debugging compiled applications 36

debugging information, generating 36
dynamic linking 35

E
editing source files 31
executable files 34
executing a program 35
executing the linker 34

F
files

editing source 31
input 34
output 34

G
GNU

compatibility with 3

I
input files 34
invocation commands 32
invoking a program 35
invoking the compiler 32

L
language standards 3
language support 3
level of XL C/C++, determining 36
libraries 34
linking

dynamic 35
static 35

linking process 34
listings 34

M
migration

source code 33
mod files 34
multiprocessor systems 6

O
object files 34

creating 34
linking 34

OpenMP 6
optimization

programs 5
output files 34

P
parallelization 6
performance

optimizing transformations 5
problem determination 36
programs

running 35

R
running the compiler 32
runtime

libraries 34
runtime options 35

S
shared memory parallelization 6
shared object files 34
SMP

programs, compiling 32
SMP programs 6
source files 34
source-level debugging support 7
static linking 35
symbolic debugger support 7

T
tools 5

configuration file utility 5
gxlc and gxlc++ utilities 5
new install configuration utility 5
new_install utility 5
xlc_configure 5

U
utilities 5

gxlc and gxlc++ 5
new_install 5
xlc_configure 5

V
vac.cfg file 33

X
xlc_configure 5

© Copyright IBM Corp. 1996, 2012 41

42 XL C/C++: Getting Started

����

Product Number: 5799-AG1

Printed in USA

GC14-7361-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	About the Blue Gene architecture
	Commonality with other IBM compilers
	Operating system support
	A highly configurable compiler
	Language standard compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Tools, utilities, and commands
	Program optimization
	Shared memory parallelization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for IBM XL C/C++ for Blue Gene/Q, V12.1
	Blue Gene/Q features
	Quad Processing Extension support
	Speculative execution of threads
	Transactional memory

	Compiler options and pragma directives support
	Debug optimized program using -g
	Compiler options or pragma directives for Blue Gene/Q
	Other new or changed compiler options and pragma directives

	Language support enhancements
	C++0x features
	C1X features
	OpenMP 3.1
	New built-in functions

	Performance and optimization
	New diagnostic reports

	Chapter 3. Setting up and customizing XL C/C++
	Using custom compiler configuration files

	Chapter 4. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Compiling parallelized XL C/C++ applications
	Specifying compiler options
	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Dynamic and static linking

	Running your compiled application
	XL C/C++ compiler diagnostic aids
	Debugging compiled applications
	Determining what level of XL C/C++ is installed

	Notices
	Trademarks and service marks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	X

