
Research Computing with Python, Lecture 7, Numerical
Integration and Solving Ordinary Differential Equations

Ramses van Zon

SciNet HPC Consortium

November 26, 2013

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 1 / 31

Today’s Lecture

Numerical Integration

Ordinary Differential Equations

Little bit of theory

How to do this in Python
(spoiler: use scipy.integrate)

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 2 / 31

Numerical Integration

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 3 / 31

Numerical Integration

I =
∫
D f(x) ddx

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 4 / 31

Numerical Integration Methods

If our integral cannot be computed exactly, what options do we have?

.
Method depends on dimension d,
function f(x), and x-domain.
.

d=1: Regular grid
Gaussian
Quadrature

d small: Regular grid
Recursive
Quadrature

d� 1: Monte Carlo

.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 5 / 31

Regularly spaced grid methods

Problem:

A curve is given by an
function y=f(x).
The area under the curve is
required, between a and b.

Numerical approach:

Compute the value of y at
equally space points x
Using an interpolation
function between those
points, compute area

In the figure:

Linear interpolation:
trapezoidal rule
The shaded area is returned
by this approach
This is an approximation to
the actual area.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 6 / 31

Equally spaced grid approach

Compute the value of y at
equally space points x

Trapezoidal rule:

I =
1

2
y1 +

n−1∑
i=2

yi +
1

2
yn

def f(x):

return cos(x/9)*sin(x)**2

a=0

b=10

x=linspace(a,b,40)

dx=x[1]-x[0]

y=f(x)*dx

I1=(y[0]+y[-1])/2+sum(y[1:-1])

print I1

3.93845493792

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 7 / 31

Different evenly spaced grid approaches

Trapezoidal ∫ a+h

a

f(x) dx ≈
h

2
[f(a) + f(a + h)]

Simpson

∫ a+2h

a

f(x) dx ≈ h

[
1

3
f(a) +

4

3
f(a +

h

2
) +

1

3
f(a + h)

]
Bode, Backward differentiation, . . .

Different prefactors, different orders, different points

What you use is the extension of these rules to

multiple intervals.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 8 / 31

Unevenly spaced grids
Gaussian quadrature

Based on orthogonal polynomials on the interval.
E.g. Legendre, Chebyshev, Hermite, Jacobi polynomials
Compute and yi = f(xi) then∫ b

a

f(x) dx ≈
n∑

i=1

vifi

xi and vi from polynomial properties
Tend to be more accurate than equally spaced approaches

nth order Gauss-Legendre quadrature:

from scipy.integrate import fixed_quad

I2=fixed_quad(f,a,b,n=20)[0]

print I2

3.9363858769075524

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 9 / 31

Accuracy

Was this the right value?

Always an approximation
More points means better approxiation
If curve is smooth, better interpolation means better
approximation (why unevenly spaced points helps)
But how close are we?

Adaptive Integration

Rather than choosing a ‘safe’ large number of n, we should increase
number of points until a given accuracy is achieved

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 10 / 31

Adaptive Integration

#Adaptive Gauss-Legendre integration

from scipy.integrate import quad

I3=quad(f,a,b,epsrel=0.001)

print I3

(3.936385876907544, 0.0009622632189420763)

Arguments of interest for quad

f: The function

a,b: The x limits

epsabs: Absolute error tolerance.

epsrel: Relative error tolerance.

limit : An upper bound on the number of subintervals used in
the adaptive algorithm.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 11 / 31

Numerical Integration in d > 1 but small

Why multidimensional integration is hard:

Requires O(nd) points if its 1d counterpart requires n.

A function can be peaked, and peak can easily be missed.

The domain itself can be complicated.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 12 / 31

Numerical Integration in d > 1 but small

So what should you do?

If you can reduce the d by
exploiting symmetry or doing
part of the integral
analytically, do it!

If you know the function to
integrate is smooth and its
domain is fairly simple, you
could do repeated 1d
integrals (fixed-grid or
Gaussian quadrature)

Otherwise, you’ll have to
consider Monte Carlo.

from scipy.integrate import dblquad

def f(x,y):

return x*y

def y1(x):

return 0

def y2(x):

return 3.14

a=0; b=3.14

I4=dblquad(f,a,b,y1,y2)

print I4[0]

24.30292804

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 13 / 31

Monte Carlo Integration

Use random numbers to pick points at which to evaluate integrand.

Convergence always as 1/
√

n, regardless of d.
Simple and flexible.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 14 / 31

Monte Carlo Integration

You can find python packages for MC (not in scipy, though)

But the essence is the same:

1 Use random numbers to generate points in your domain
2 Evaluate the function on those points
3 Average them and compute standard deviation for error.

One variation is to use a bias in step 1 to focus on regions of
interest. Bias can be undone in averaging step

Another variation is to have each point generated from the
previous one plus a random component: MC chain.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 15 / 31

Ordinary Differential Equations

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 16 / 31

Ordinary Differential Equations (ODE)

Lotka–Volterra

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)

Harmonic oscillator

dx

dt
= y

dy

dt
= −x

Rate equations

dx

dt
= −2k1x2y + 2k2z2

dy

dt
= −k1x2y + k2z2

dz

dt
= 2k1x2y − 2k2z2

Lorenz system

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 17 / 31

Mathematical Details

General form:

∑
n

an(t, y)
dny

dtn
= f(t, y)

n=order

Boundary conditions: much
like PDEs: next lecture

Initial conditions:
y, dy

dx
, . . . , at t = t0

Define y0 = y; y1 = dy
dx

, . . . ,
→ set of first order ODEs

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 18 / 31

First order initial value problem

Start from the general first order form:

dy

dt
= f(t, y)

t is one dimensional, y can have multiple components

All approaches will evaluate f at discrete points t0, t1,

Like integration:

yn+1 = yn +

∫ t+h

t

f(t′, y(t′))dt′

Consecutive points may have a fixed step size h = xk+1 − xk or
may be adaptive.

yj(tn+1) may be implicitly dependent on f(tnr+1).

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 19 / 31

Stiff ODEs

A stiff ODE is one that is hard to solve, i.e. requiring a very small
stepsize h or leading to instabilities in some algoritms.

Usually due to wide variation of time scales in the ODEs.

Not all methods equally suited for stiff ODEs. Implicit ones tend
to be better for stiff problems.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 20 / 31

ODE solver algorithms: Euler

To solve:
dy

dt
= f(t, y)

Simple approximation:

yn+1 ≈ yn + hf(tn, yn) “forward Euler′′

Rationale:

y(tn + h) = y(tn) + h
dy

dt
(tn) +O(h2)

So:
y(tn + h) = y(tn) + hf(tn, yn) +O(h2)

O(h2) is the local error.
For given interval [t1, t2], there are n = (t2 − t1)/h steps
Global error: n×O(h2) = O(h)
Not very accurate, nor very stable (next): don’t use.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 21 / 31

Stability

Example: solve harmonic oscillator numerically:

dx

dt
= y

dy

dt
= −x

Using Euler gives(
xn+1

yn+1

)
=

(
1 h
−h 1

)(
xn

yn

)

Stability: eigenvalues λ± = 1± ih of that matrix.

|λ±| =
√

1 + h2 > 1 ⇒ Unstable for any h!

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 22 / 31

Stability

Example: solve harmonic oscillator numerically:

dx

dt
= y

dy

dt
= −x

Using Euler gives(
xn+1

yn+1

)
=

(
1 h
−h 1

)(
xn

yn

)

Stability: eigenvalues λ± = 1± ih of that matrix.

|λ±| =
√

1 + h2 > 1 ⇒ Unstable for any h!

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 22 / 31

ODE algorithms: implicit mid-point Euler

To solve:
dy

dt
= f(t, y)

Symmetric simple approximation:

yn+1 ≈ yn + hf(xn, (yn + yn+1)/2) “mid-point Euler′′

This is an implicit formula, i.e., has to be solved for yn+1.

Example: Harmonic oscillator

(
1 −h

2
h
2

1

)(
y

[1]
n+1

y
[2]
n+1

)
=

(
1 h

2

−h
2

1

)(
y[1]

n

y[2]
n

)

Eigenvalues M are λ± = (1±ih/2)2

1+h2/4
so |λ±| = 1⇒ Stable

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 23 / 31

ODE solver algorithms: Predictor-Corrector

Computation of new point

Correction using that new point

Gear P.C.: keep previous values of y to do higher order Taylor
series (predictor), then use f in last point to correct. Can suffer
from catestrophic cancellation at very low h.

Adams: Similarly uses past points to compute.

Runge-Kutta: Refines by using mid-points.

Some schemes require correction until convergence.

Some schemes can use the jacobian, e.g. the derivatives of the
right hand side.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 24 / 31

Further ODE solver techniques

Adaptive methods:

As with the integration, rather than taking a fixed h, vary h such that
the solution has a certain accuracy.

Don’t code this yourself!

Good schemes are implemented in packages such as
scipy.integrate.odeint, scipy.integrate.ode

odeint uses an Adams integrator for non-stiff problems, and a
backwards differentiation method for stiff problem.

ode is a bit more flexible.

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 25 / 31

Lotka–Volterra using scipy.integrate.odeint

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx)

from scipy.integrate\
import odeint

alpha=0.1

beta=0.015

gamma=0.0225

delta=0.02

def system(z,t):

x,y=z[0],z[1]

dxdt= x*(alpha-beta*y)

dydt=-y*(gamma-delta*x)

return [dxdt,dydt]

t=linspace(0,300.,1000)

x0,y0=1.0,1.0

sol=odeint(system,[x0,y0],t)

X,Y=sol[:,0],sol[:,1]

plot(X,Y)

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 26 / 31

Conclusions

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 27 / 31

Conclusions

Many different methods for numerical integration and solving
ODEs

Python package scipy.integrate helps you out.

It has procedures to readily get good results:
scipy.integrate.quad and scipy.integrate.odeint

Unfortunately, hard to get what they really do:

I For scipy.integrate.quad, had to look into the scipy python source
to know that it uses Legendre polynomials.

I For scipy.integrate.odeint, had to look into the fortran
documentation

If you’re using sciPy for anything but exploration: do you
research and learn what they really do!

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 28 / 31

Next Time

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 29 / 31

Next and Final Lecture

Thursday November 28, 2013, 11:00 am
Topic: Partial differential equations

Ramses van Zon (SciNet HPC Consortium) Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential EquationsNovember 26, 2013 30 / 31

	Numerical Integration
	Ordinary Differential Equations
	Conclusions
	Next Time

